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This report describes the results obtained during the two years t6f

funding extending from 1/88 to 1/90 with regard to our project entitled "The

Problem of Robust Compensation for Systems with Unmodeled Dynamics." The

project has consisted of several lines of research which are quite distinct,

but which show great promise toward combining them into a single comprehensive

theory. Out goal has been to explore the problem of designing feedback

control systems that are insensitive to the presence of high-frequency

dynamics not accounted for explicitly in the mathematical model of the plant.

Some of our previous work suggests that it is possible to design controllers

which simultaneously stabilize a given nominal system as well as a large class

of small singular perturbations of the system. We say such a controller is

"robust" with respect to the certain class of unmodeled dynamics.

Attached are six papers summarizing work which has been supported all or

in part by the present grant and which either have appeared, have been

accepted, or have been submitted for publication. Two have already appeared

in the IEEE Transactions on Automatic Control, one is scheduled to appear in

the same journal in May, one has appeared in the Proceedings of the 27th IEEE

Conference on Decision and Control, and one is presently under review. In

addition, a summary page is included describing a paper presented at the SIAMI

Conference on Control in the 90's (5/89, San Francisco). We also are in the

process of writing a journal article describing the work carried out in the

the final stage of the project. The manuscript should be available within the

next two months. Part of the research effort over the past two years has been

carried out by my graduate student Mingde Tan as part of his Ph.D. research.

His dissertation should be available sometime this spring.



Reference [1] contains work which was partially carried out during the

funding period and which was instrumental in establishing the direction

outlined in the original grant proposal. Our basic idea was to explore the

role of parasitics in the performance of automatic control systems, without

having to resort to explicit representations of specific parasitic effects.

It was our desire to develop a comprehensive theory of compensator design

which would guarantee performance in the presence of a large class of possible

parasitic effects. Reference [1] contains preliminary results directed at

this goal.

Along somewhat different theoretical lines, but with a similar class of

engineering problems in mind, references [2]-(4] constitute initial attempts,

carried out with the aid of a colleague here at Wisconsin, Professor Chris

DeMarco, to characterize the geometric structure of the class of system

perturbations under which a control system retains stability and perhaps other

performance characteristics. Contained in [2]-[4] is a thorough treatment of

the case where system order is constant (the nonsingular case). Our more

recent work may be viewed as extending these results to the case where

parameter variations can cause changes in system order (the singular case).

Reference [5] summarizes the work carried out by my graduate student,

Mingde Tan, and me over the initial phase of his dissertation research (the

first year of the funding period). Our principal idea was to study the

effects of small system perturbations on internal closed-loop stability.

Ultimately, we wish to examine many of the recent robust control theories of

Vidyasagar, Zames and Francis, Stein and Doyle, and others in terms of

internal closed-loop system behavior. For example, suppose a plant model is

given and a corresponding compensator is designed using some methodology such

that the closed-loop configuration is input-output stable. The design methods



of the researchers just mentioned typically guarantee that, for a certain

class of perturbations of the plant (and sometimes the compensator), the

corresponding perturbed closed-loop system is also stable in an input-output

sense. It would be highly desirable to know whether the perturbed closed-loop

system is internally stable as well. From our perspective, it is especially

crucial that the compensator be insensitive to perturbations corresponding to

unmodelled high-frequency dynamics.

In order to formulate this problem precisely, one must first develop an

understanding of how internal system structure is affected by perturbations of

the transfer function. To this end we have developed a "perturbational"

analogue of the standard state-space realization theory for rational matrices

In our theory, families of rational matrices are considered (either convergent

sequences or continuous parametrizations); it is desired to find corresponding

(convergent) families of state equations which realize the given transfer

matrices. We have obtained results that show, for example, that every such

family of transfer matrices has a realization and that "minimality" of a

realization can be related to both the degrees of the given !ational functions

as well as to controllability and observability of the realizations

themselves. In short, we have succeeded in developing the perturbational

analogues of the standard results concerning realization of a fixed rational

matrix. This body of results is among our main accomplishments in the past

two years.

Based on our understanding of the fundamental issues surrounding internal

realizations of perturbed transfer functions, we have spent a large portion of

the past year exploring the relationships between robust input-output

stability and robust internal stability. We have succeeded in establishing

simple conditions under which internal as well as input-output stability is



robust to parasitic model uncertainty. These results form the second half of

Mingde Tan's dissertation and are presently being organized for journal

publication.

In addition to the work with Mlngde Tan, I personally have continued the

effort I began in 1986 which addresses questions similar to those described

above related to internal behavior of robust closed-loop systems. The

culmination of this effort so far is the paper [6] which shows that robust

design methodologies necessarily must incorporate some internal system

information; the exact form of the "minimal" internal information is as yet

unknown. A recent breakthrough has been summarized in [7] which was presented

in May 1989 at the SIAM Conference on Control in the 90's in San Francisco.

(There were no published Proceedings for this conference.) For a certain

large class of linear systems, it is now possible to precisely characterize

the family of singular perturbations under which closed-loop stability is

retained.

Overall. our two-year research effort has been fruitful, answering many

important questions and leading to new ones. In the final analysis, the

entire body of results we have generated is not as coherent as we original

hoped for; however, we feel that, given the time-limit set for the project,

the progress made in each research direction more than compensate for this

fact.,
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(1] J. D. Cobb, "Toward a Theory of Robust Compensation for Systems wfih
Unknown Parnsltics," IEEE Transactions on Automatic Control, Vol.- 33i
No. 12, December 1988.
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Toward a Theory of Robust Compensation for
Systems with Unknown Parasitics

J. DANIEL COBB, MEMBER, IEEE

Abstract-We consider the problem of designing a robust compensator We now examine various existing theories which lie within the
based on a plant model with order uncertainty. The uncertainty is asymptotic framework. The most obvious body of such results
characterized mathematicelly as a class of generalized singular perturba- centers around the well-known fact that, for state-space models,
tions of the plant. This piper considers the case of static compensation. A the parameters of the closed-loop system are continuous functions
necessary and sufficient condition is established under which actual of the open-loop plant and compensator parameters. For example,
c sedl4oop behavior Is close to that predicted by the plant model under if we let 61 be the set of all matrix triples t = (A, B, C) and Q
sufficiently small singular perturbations. The condition is shown to be consist of all feedback matrices K, and if we combine t and K in a
generic, standard way, then (R = 6 x Qand 3 consists of triples (3 (, K)

= (A + BKC, B, C). Adopting Euclidean topology ofi , Q., and
3, it follows that (! is continuous everywhere, i.e., every

I. INTRODUCTION compensator is robust relative to every plant. One immediate
r HE problem of robust compensation may be roughly stated as consequence of this observation is that closed-loop eigenvilues

are continuous functions of plant and compensator parameters;.L that of designing a good controller for a given physical system hence, every stable closed-loop configuration remains stable
on the basis of a model which contains less than complete under sufficiently small parameter variations. These facts are used
ifoifati6h About that system. The resulting closed-loop configu- routinely in many control system analyses without explicit
ration should exhibit reasonable performance in spite of the mention. It should be noted, however, that the perturbations
uncertai aspects of the system. In the strictest sense, every model considered here do not alter either plant or compensator order.
contains uncertainty; hence, any good controller design should Therefore, this approach alone is inadequatc when dealing with
address the issue of robustness. ordcruncertainty.

Among the many types of robust control theories appearing in The main body of existing results that does deal with order
the literature is the asymptotic approach. Typical results in this uncertainty in an asymptotic setting can be broadly termed
area guarantee reasonable closed-loop performance under suffi- singular perturbation theory (see [11-13]). Here a typical analysis
ciently small perturbations of a nomial model (e.g., variations in treats a parametrized system of the form

the coefficients of a single differential equation). Although only
local in nature, such results are often a first step in developing a r1  O [A,, A 1  Bl
global theory where an explicit characterization is attained for X= A A x+ U
classes of systems which can be simitaneously compensated. The L0  el A I A2J LU
results of this paper fall into the asymptotic category.

It is possible to view most asymptotic robustness theories within Y= [C, C21X (i)
a common mathematical framework. Let 6, (%, and 3 be
topological spaces, and let 61 C 6' x 0. inherit subset topology, with A, stable and seeks to achieve some closed-loop perform-
6', q, and 3 correspond to the sets of all possible models of ance criteria for all sufficiently small e 2 0. (In this case, we
plants, compensators, and closed-loop systems, respectively. The might take 6) = 10, co).) A major drawback with this approach is
topologies on 6' and 0. are chosen so tl.at small perturbations that explicit knowledge of the parasitic structure giving rise to
characterize measurement error inherent in developing each order uncertainty is assumed. If more than one perturbation (1)
model; small perturbations in the topology of 3 reflect tolerable need to be considered, serious problems may develop. For
closed-loop performance error. If R1 is interpreted as the class of example, the system
all plant-compensator pairs which lead to closed-loop systems that
are well-defined and which satisfy any additional constraints 1 0 01t [I 1 I X
present in the design problem, we may naturally define the loop- 0 e 0 0 - 1 0 -l
closing map (:61 -- 3 which takes each plant and compensator 0 0 1 0
into their corresponding closed-loop configuration. Many robust-
ness questions then reduce to that of finding the points of Y---I I OIx (2)
continuity of (0. In other words, we wish to characterize the class
of all plant-compensator pairs such that small perturbations of is nominally (e = 0) unstable, but can be stabilized With the static
each pair result in small perturbations in the closed-loop system. coinpeliallor u = 20) , The perturbed system (e > 0) is also

stabilized by the same compensator for sufficiently small e.
Manuscript received July 6, 1987. revised May 25. 1988. This paper is Setting e = 0, premultiplication of (2) by the matrix

based on a prior submission of June 5. 1986. Paper recommended by Past
Associate Editor. . B. P rson. This work was supported in part by fil e 

=[c0 0
National Science Foundation under Grant I.CS-8612948 and in pairt by ihe Air 0 1
Force Office of Scientific Research under Grant AFOSR-88.)87.

The author is with the Department of Electrical and Computer Engineering, 0 0
University of Wisconsin-Madison, Madison, WI 53706-1691.

IEEE Lok Number 8823520. yields an equivalent system equation which may in turn be
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perturbed according to where E, A, B, are real matrices with E and A square. We

S0 ! [1 1 _' r 1  each initial condition x0 and each input function u; from [171 we
0 0 x= 2 -1 x+ u know that this is equivalent to[o J o IsE-AI A 0.

Y~f-l I Ox. (3) Such systems have been studied extensively (e.g., see 1141-1161),

In this case the compensator u = 2y yields a perturbed closed- and are referred to as singular when E is singular and regular
loop system having a pair of eigenvalues X1, and X2, with otherwise. The polynomnial
Re X,, - + o as e - 0'. Such divergent behavior does not
coincide with any reasonable definition of small perturbations in A(s)= IsE-AI ()
3. We may therefore conclude that examination of a single may be considered the characteristic polynomial of (4) and its
parasi.! ; effect is in general not sufficient to guarantee robustness roots the eigenvalues of t. An important property of singular
of a compensator with r btipct to other order uncertainties. systems is that small perturbations in the entries of E and A can

Additional singular perturbation results include the multiple change the system order; one example of this phenomenon is (1).
time-scale extensions 171 and [81 and the robust compensation Suppose we wish to find a compensator of the form v = Ky -
theorems of [5]. Multiple time-scale techniques suffer from the v which is robust with respect to perturbations in E, A, B and C.
same drawback as single time-scale analyses based on (1) in that Since we are inevitably interested in time response, we might ask
they assume an explicit knowledge of parasitic structure. Also, which compensators result in a closed-loop system whose time
much less is known about the e-dependence of the time response response varies continuously with E, A, B, and C, regardless of
of multiple time-scale systems than in the single time-scale case. the perturbation. Unfortunately, it is easy to show that for any K

In 151 it is shown that any compensator having a strictly proper there exist perturbations in the system matrices that yield
transfer function matrix, which stabilized (1) with e = 0, also divergent behavior in the closed-loop system trajectories for some
stabilizes (1) when e > 0 is sufficiently small. Furthermore, it vegent behvion t oed-l system ae forme15 initial conditions. A more meaningful problem can be formulated
shown that the corresponding family of closed-loop transfer by first observing that not necessarily all perturbations in the
matrices converges uniformly on compact subsets of the right-half matrix entries of (4) are physically realistic. For example, a
complex plane as e -- 0 .These results thus provide a means for simple RC circuit consisting of a single resistor, capacitor, and
robustly compensating a system in the presence of a large class of voltage source may be modeled as
possible perturbations. One drawback to this theory is that only
single time-scale systems (1) are treated. In practice, a much -x+u
larger class of perturbations may be required to model all relevant
effects. Additional problems are that the results of [51 do not take y=x (6)
into account uncertainties in the compensator model and that
uniform convergence on compact sets in ( is difficult to relate to where x is the capacitor voltage, R = 1, and C = e. Positive e
time-domain performance of the system. makes perfect physical sense, and it seems reasonable to try to

Another notable asymptotic robustness theory is that of [6] design a compensator based on the low-order model correspond-
where the graph topology is introduced. Let ci and Q, each be the ing to e = 0. On the other hand, if e is negative, the system
space of all rational matrices, 3 the space of strictly proper and engineer could not expect to produce a robust compensator
stable rational matrices, equipped with the H,. norm, and (R = without first being aware of the negative capacitance and then
0 -1 (3). The graph topology is the weakest topology on 6' and 0. using an appropriate higher order (in this case, first-order) model.
under which e is continuous. We have shown in [9], however, A simple way to characterize physically meaningful perturba-
that singularly perturbed systems generically do not converge in tions in the plant is to look at their effect on plant trajectories for
the graph topology; hence, in this sense, robust compensation in various inputs and initial conditions. For example, in (6) an initial
the presence of order uncertainty is unattainable, condition x0 = I yields x(t) = e- 1" which converges on compact

In view of the shortcomings of the existing asymptotic subintervals of (0, 0*) as e - 0', but diverges as e - 0-. Strictly
techniques, we wish to propose a framework as well as some speaking, we are really not saying as much about perturbations of
preliminary results for an alternative robustness theory which will (4) which can occur in the physical world as we are about those
be taken into account: 1) multirate and other relatively unexplored perturbations which are consistent with the measurements taken
classes of singular perturbations; 2) the necessity of dealing while formulating our plant model; a system model is good only if
simultaneously with a large class of system perturbations, each it is capable of predicting the behavior of the actual physical
corresponding to a possible higher order model; and 3) time- system.
domain behavior of the closed-loop system. Although treatment of We may now state our definition of asymptotic robustness more
1) and 2) seems on the surface to be a formidable task, we will see precisely. For a given plant of the form (4), a compensator is
that it is possible to approach the problem in a roundabout way, robust if all perturbations in both the plantaiid compensator,
thus avoiding having to explicity characterize all possible parasitic which bring about only small variations in the trajectories of each
phenomena. We feel that the inclusion of 3) is a desirable feature system individually under all inputs and initial conditions, result
for any good robustness theory, since the goal of system design in only small variations in the closed-loop system trajectories. The
must ultimately be satisfactory closed-loop time response. In view meaning of the phrase small variations will be precisely defined in
of this fact, a time-domain approach has certain advantages over Section II. In the same section we will see that our approach
frequency domain techniques, since the relationship between time implicitly incorporates the idea that small system variations
response and frequency-domain behavior can be rather complex. should correspond to only small changes in system parameters.

Before becoming too engrossed in technicalities, we will briefly
describe (in rough terms) the problem we wish to address. 11. PRBUMINARUBS
Consider the system

Ex=Ax+ Bu In this section we summarize the constructions of 1101, [I I],
1131, and 1141 which are pertinent to subsequent developments.

(4) Let

y=Cx E(n, m,p)- {(E,A, B, C) E N(24+,+P)J IsE-Al 6 0)
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and let 2(n, m, p) be the corresponding quotient manifold (see bility and impulse observability, respectively. The corresponding
t181) determined by the equivalence definitions for observability are dual to (10), (11), and (12) (see

[141). Since each of these definitions is invariant under the
(EI, A,, B,, C,)(E 2, A2, B2, C2) iff C, =C 2 and equivalence transformation (7), we may also consider the subsets

nonsingular M s.t. ME, =E 2, MAI =A 2 , and MBI =B 1. (7) £,, £, , £ ,,, Xs , £ , ZoJZ C Z determined by (10),
(I1). (12), and their duals, as well as the controllable and

(The arguments n, in, and p will be dropped when clear from observable systems ,,, = Z, n ,£. Various properties of these
context.) We chtosc the equivalence rclation (7) because pre- spaces are studied in 1131; for example, X1,. and ,,, are open, and
multiplication by M has no significant effect on the system Z,, and X£, are dense in Z.
representation. Indeed, premultiplication by M merely performs Other important subsets of Z are the singular subspace Z,
elementary row operations on the system of scalar equations (7). consisting of all points fE, A, B, C1 with E singular, the regular
Hence, we are merely identifying systems formed from each other subspace Zn = Z - 2s, and the subspace of unit index systems
by reshuffling the equations. We do not wish to identify systems
which are related by a coordinate change on the state variable x, £, { E £ Ideg JsE-A I = rank E}.
since this would reduce the system space to one consisting of
input-output descriptions. Our intention is to produce results In [101 it is shown that Z" is open and dense in 2; from [131, Z,,
which exploit internal information. n £1 is dense in ..

The equivalence class containing o = (E, A, B, C) is denoted t Let 5) be the set of all C- functions v: IRl -- lWl with compact
- [E, A, B, Cl. In this case, we say a represents Z. Let support and let D+ be the space of distributions with support in

10, oo) (see [19]). To define convergence in Z.,, we adopt the
r=ord v=ord t =deg A weak* topology: A sequence fk C Z,, is said to converge to f if

(f, 0) for every 0 E D, where ('k, 4) denotes the functional fk
where A is the characteristic polynomial (5) of Z, and note that a evaluated at the point 0.
unique matrix C is determined by each t E £. A sequence G E Associated with each initial condition xo E (ll and each
£ converges weakly to t E Z (Qk w + ) if G ". in manifold piecewise continuous input u there exists a unique solution ,xau
topology. Since £ is a quotient manifold, the natural projection (Qk) E D , of the system Gk (see [17]). From linearity it follows
(E, A, B, C) ,- E, A, B, Cl is continuous with respect to weak that the solution can be decomposed into natural and forced
convergence. Conversely, we have shown in 1101 that, for each response
convergent sequence k4  t in £, there exists a sequence (Ek, Ak, .O

t u(k) = 'Ixo(bk) + '0.(Ak)"
Bk, Ck) -. (E, A, B, C) E S such that [E, A, B, C1 = t and [Et,
Ak, B Ck] = tk for every k. Letting

Let G r t [E, A, B, Cl with Esingular. In IlI is shown [B,.I [ C
that there exist nonsingular matrix sequences Mk - M and Nk "B =MkFk, [Ck CJI lICkN, Xosft Xo
N such that L XO k j

[ 0 A k ,AkNk A ,k (8) ()] -Nk hkxok) (13)

where r = ord , Ak - A,, and Atk - A, with A/nilpotent. For we have from [17] that
sufficiently large k, the matrices Afk and Ak are unique up to a 4",, (b,)=exp (A,k)xn+exp (Art) * BPku (14)
similarity transrormation. For a constant sequence, the decompo-
sition (8) reduces to the Weierstrass decomposition for matrix where exp (A) E D1.1 is defined by
pencils (see [171) 0r[+ 0 exp (A)(t) =e~A

MEN 0 MAN =[A 0 I, (9) and "*" denotes convolution. Each ' satisfies several
I0  A0properties of continuity. Indeed, convergent of A,k guarantees

The matrices M and N may also be used to decompose (4), uniform convergence of exp (Ask) on compact intervals and,
yielding hence, weak* convergence. Continuity of convolution with

respect to both types of convergence assures that each sequence
M [B , CN=[C, CI. !',oQ() converges weak* and uniformly on compact intervals

BI whenever Gk 4 t. Furthermore, since *',, () - V.o(,Q) for t
E £v, '0,, satisfies the same properties when restricted to .1.Referring to [14], we say that (4) is slow controllable if and To aid in writing a general expression for VA0(), we note

only if that there exists a nonsingular matrix sequence T, (not necessarily
rank [XE-A BJ=n (10) convergent) such that I

T;IRT.. ATk 0= (15) 1for every X E , and fast controllable if and only if T k0 Af 1

rank [E B]=n. (I1) where A/k is nonsingular and Alk is nilpotent. Then from kill,

The system is controllable if and only if both (10) and (11) hold. [exp (A -1 ) 0
In addition, we say that (4) is impulse controllable if and only if ,o(Qk) Tk qk- 1  1 T;I X01 k

Im A +Ker Af+Im Bf= L"-'. (12) J
(All four system properties can also be defined directly in terms of [exp(,4 1
the solutions of the differential equation (4), but we find the linear +Tk *k-

3  i (16)
algebraic characterizations more useful in the context of this I - ,
paper.) Controllability and observability imply impulse controlla- 1
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where requirement would not be particularly meaningful, since premulti-
plication of (4) by any nonsingular matrix prbdtics in eiititely

1 equivalent representation. From 1101 it does follow that strong
/ k J = Tconvergence of G implies convergence of, some repr-entative

sequence (Ek, Ak, Bk, Ck) E E(n, m, p). We are'therefore
and 6' and ui denote the ith distribution derivatives, justified in interpreting weak convergence in 01 and 3 as

convergence of system parameters and stating that i pertuibation
I1. PROBLEM FORMULATION of a system which yields only small changes in system trjedtories

also results in only small variations in system piriieteit
We are now in a position to precisely state the basic problem A plant-compensator pair (Q, K) E M1 is asymptotically robust

under consideration. For two reasons we are forced to select a (or K is a robust compensator for t) if e(k, Kk) 4' 0(, K) for
rather abstract mathematical framework for our constructions, every x0, u whenever k -$ t and Kk - K, This is equivalent to
First, since perturbations leading to changes in order require the continuity of the loop-closing map 18 at (Q, K) with respect to
use of systems of the form (4) and since such systems can have strong convergence in (1 and 3. It is routine to verify that our
impulsive solutions, the space ). of distributions and its definition of robustness can be couched in term of topologies on
associated weak* topology underlie all analyses. Second, it will be 6, Q, and 3 simply by imposing on each set the weakest topology
seen that in order to meaningfully incorporate the idea that small that makes each map I'xnu continuous (see [201). Our main
system perturbations should lead to only small changes in the prob'em of interest is to characterize the class of all robust plant-
entries of the matrices E, A, B, and C, it is necessary to identify compensator pairs of (Q, K) E 61 for any given values of n, m,
systems according to the equivalence relation (7). Hence, we must and p. Equivalently, we seek to describe the class of all
work with the non-Euclidean system spaces 2(n, m, p). compensators K which are robust with respect to a given plant

We consider the problem of compensating the plant model (4) model .
with a static system of the form

IV. THE CLASS OF ASYMPTOTICALLY ROBUST COMPENSATORSu=Ky+v (17)

We begin by presenting a result which formalizes the intuitive
where K is a matrix and u is an external input. Let iY = 2(n, m, idea that robustness can fail to hold only when the plant model (4)p) and 0. = 111,p, and note that the closed-loop system takes the is singular. Note that when (4) is regular (Q E 21), 41 = NIP.
form Proposition 3.1: If tE Z 11, every K 6 1MW" is robust.

Proof: Choose K, x0, u, and sequences K, -. Kand/ k' G .

Er=(A +BKC)x+Bu Then Ck - C. Since .Ln is open in manifold topology, t, E .1"
, K): (18) for sufficiently large k. From [101, G 4 j so continuity of e with

respect to weak convergence implies (G , K) - Q((, K). Since
y=Cx. each to,, is continuous on L" and G(.0" x NAP) C Zi, we have

In general, the system (18) may not exhibit existence and *'0U(e(Qk, Kk))-*,0o((Q, K%
uniqueness of solutions or may respond to certain initial condi- "K0
tions with impulsive transients (see [15], [17)). Since we are only
interested in choosing a compensator such that the resulting Before starting our main result on robustness, we need to
closed-loop system does not suffer from either of these defects, consider one more algebraic system property of (4). We say that a
we restrict attention to system (4) is fast cyclic if, in the Weierstrass decompositibn (8),

the nilpotent matrix Af is cyclic. If Al is in Jordan form, fast
R = {(Q, K) E T x 0. [deg IsE-(A + BKC) = rank E}. (19) cyclicity is equivalent to

Adopting (19) is equivalent to assuming that (18) has unit index; 0 1
hence, we may set 3 = ZI(n, m, p). Note that the loop-closing
map C is continuous with respect to manifold topology on Z .
(weak convergence); i.e., small changes in the entries of E, A, B, A=.
C, and K bring about only small changes in the closed-loop '
system matrices.

We say that a sequence G in T converges weakly to t E 0
(Gb ' t) if 4*"Ou(k) - '(, ) weak* for every x0 and u and if C,

C. On the other hand, we say that a sequence k E 3 Hence, from (9), a system (4) is fast cyclic if and only if rank E =
converges strongly in 3 if each *, 0 (bk) converges uniformly on n - t. Note that fast cyclicity is independent of the choice of
compact subintervals of (0, a) and C -, Ck. Uniform conver- representation for J.
gence of solutions is meaningful for systems in 3 = .1 only In order to prove that a certain algebraic condition on the
because unit index systems have no impulsive components in their compensator K is well defined, we next present a pair of lemmas.
solutions (see [17]). We have shown in [101 that strong conver- It will eventually be proven that this condition is necessary and
gence in 61 implies weak convergence in 61.1 It is easy to verify sufficient for robustness.
that strong convergence in 3 implies convergence of each Lemma 4.1: Let N and T be any n x n matrices with N
'#2 ,,() in the weak* sense (see [ 191); hence, strong convergence nilpotent and having index q. Then Ker N is N q- I'-invariant.
implies weak convergence in 3 as well. Proof" Since N(Nq-IT) = NqT = 0, Im N 1'T C Ker

Although strong convergence of kk does not necessarily imply N. Hence,
that the entries of the system matrices Ek, Ak, Bk, and Ck
converge regardless of the representation (4) of k, such a strict (N-I T) Ker N C Ker N.

i Actually, it is shown in 1101 thai convergence of ' 10,,() for every x,, u
guarantees convergence of tb in manifold topology when u ranges over :Um. it Note that, if N is cyclic, Ker N is one-dimehsional.
is easy to show, however, that the same result holds when u is restricted to be Lemma 4.2. If t 6 ,Z. is fast cyclic, impulse controllable, and
piecewise continuous, impulse observable, and (A1, B, CI) is Obtained from the
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Weierstrass decomposition of any representation of t, then From 112, Lemma 4.31, pi can be factored as

A 1-(1,-,+ BfKCf) lKer Af>O (20) "-,a
p,(s)=vj(s"+b,_-..1," '+ +b ) 1- (aus- I) (25)

determines a nonempty open affine half-space in Ill, which is i.,
independent of the representation. (The vertical bar denotes the
restriction of the linear operator to the subspace Ker Af.) where each a,, -- 0 and pj., br; i = 0, .. ,/s - I all converge.

Proof. In view of Lemnia 4. I, (20) is well-dcfincd. For the Equating the coefficients in (24) and (25) of s' and so yields
caser = n - 1, A= 0 and '-I.

A ,-(1+ BfKCf)= - + BfKer (21) *j iH o

For r < n - 1, choose a nonsingular T so that T- 'Ar T is in
Jordan form. Letting a,,=(- l'-, tim , j.

[i 1 For sufficiently large j it follows that

= T-' af, [c, ... c.,]=CfT (22) #-p
_J sgn 71 oj=sgn aj sgn 'pj

I- l

we know from [141 that impulse controllability and impulse sgn ak sgn lim v,
observability guarantee b,., * 0 and cl * 0. Also,

T b._,Kc ..."b,.-,Kc,-,_I +b.-,Kc,,-,] T- . Hence, for each sufficiently large j there must exist an i such that

•0 o •b0 K E o, rp>O.

Hence, Since , - 0, there existsj > k such that I/uij> k. Set X1 = 1/
aj and Ek = a,. 0

A;-'-(I,,_,+BfKCf) IKerA'=bn.,Kc. (23) Our main result, Theorem 4.4 completely characterizes the
robust static compensator gains K.

Setting (21) and (23) positive determines nonempty open affine Theorem 4.4: Let e E £.
half-spaces. 1) A. robust K E MPm exists iff t is fast cyclic, impulse

From [11l, (A1 , B1, Cf) is unique up to similarity transforma- controllable, and impulse observable.
tion for a given J. Clearly, similarity transformation does not alter 2) Under the conditions of part 1), K is robust iff
(21), so the resulting half-space is unchanged. To see how (23) is
affected by similarity transformation, note that (23) means A -- '(1+ BfKCf) lKer A/>O. (26)

Proof.
A, i) (Necessary): Let r = ord t. We need only consider the case

for any x E Ker A1. Let z = T-'x. Then r < n - 1, since r = n - I implies t is fast cyclic, impulse
controllable, and impulse observable (see [14). Suppose r < n -

T-Af-1,- ,+B f KCI) Tz=bn.,Kcz I and choose a representation (E. A, B, C) for t. Invoke the
Weierstrass decomposition (9), select a similarity transformation

so to put Af in Jordan form, use the notation (22), and let

(T-'AT)M -'1(In+ (T- IB) 0 ,yj

K(CT))I(T"' KerAf)=b._,Kc,. " (27)

But T-' Ker A1 = Ker (T- 'AT) so the resulting half-space is "n-r- I
again unchanged. -'

A final technical lemma is needed to prove our main robustness 0theorem.

Lemma 4.3: Let all; i = 0,..., A be convergent sequences in (Each "Y is either 0 or I.) If t is not fast cyclic, impulse
M with a ap * 0 for every k, and letf: P - 0; i = 1, . -, Y - controllable, or impulse observable, then eithery, = 0 for somei,
1; k = 1, 2, " be continuous at the origin and satisfy fk(0) = b,, = 0, or c, = 0 (see [ 14)). Choose nonzero sequences 'i"
0, where v > i. Then there exists a sequence ek in Q such that for ', bn_,.l - b,,_r, C1k - c,, and Kk -. K such that
each k:

) 0 < 1EI < I/k n-r-1
2) sgnE& = -sgn a, bk,-.kKkC 1 k 1 '7,k<0 (28)
3) the polynomial ekS' + fP-.k(Ek)$S'' + + i-I

/4+.1.(ek)S ' +i + (ap, + fLk(Ek))S + "- + (alk + fAAe))s +
a0k has at least one real root X1 with X1 > k. for every k, and define

Proof. Fix k, let aj = -I/j sgn ak, and consider the
sequence (in ) b,

Ps(I~xS'+'-'k(ts$''+'"Blk=T : ,Cf*=tC~kc2 ... c,-T (29)

+f,.,o i(Cj)S"'+ (apl+fl(exj))SO + b..,.'

+ (atk +f~k(i))S + a0. (24)



S-A -M - -

COBB: ROBUST COMPENSATION 1135

where

I d' ," ,

A•(x) T T-'. (30) exp (t't ' ) m.oA (x)~~a i.0Y,--~k,,

x 0 . t

Now, we may uniquely define sequences aik; I = 0,*.., n - I .
and potynomiPils Pk; i = 1, " n - 1, with PR(0) = 0, [-
according to.0+

)ff-rS1+ ('s-1,k + Pn-IA ( X ))$S - + "' +(alk+Plk(X))S+aOk and

1sl 4 -S( fl 8K(X))-(IB, Kk Cfk)f I exp (A_*
- BKk Cs) x - +B kKk k (-L, 1-I

By elementary matrix arguments, "-1 I d' 1 el
AT! ol

1, k( 1) 1 b.,.k kClk rJ 'Vik - (31)
1-1 0 TIk

Lettingfik(x) = Pik(X"(1 -' ), v = n, and p = n - 1, we may . . * BftU.

select a sequence Ek satisfying the properties in Lemma 4.3 and I,.0 1
define"0

,-k= Consider the matrix

Since Ek - 0 and sgn ek = - sgn an. 1,k, (28) and (31) guarantee

that ak +co.If we set k 0t

Ek=M-' 0 A (_ ) N -', A=A A routine calculation shows that the (i, j)th entry of E-1 exp
(I Z'1) is

Bk-M 1 B, Ck[Cs L!1kJN -1 (32) T$-M i S- - 11

we have It was shown in the proof of [10, Theorem 41 that
' 1 a . 5i-r-t

det (sEk -(Ak + BkKkC)) r'
0-3 (fkSn+ (n - -,k(.k))S

$ 
+

' + exp(X')-..

+ (a t+fA(4))s + a0) (33)

for some constant f. From Lemma 4.3, (33) has at ieast one real
root 4 > k for every k. Since (33) is just the characteristic Therefore, 01Jk - - I-' for each i at i, and '* k- ,* for
poly.omial of the closed-loop system e(Q(, K), (15) shows that Xk any xnu. It follows from (13), weak* continuity J8f convofltion,
must be an eigenvalue of the closed-loop A;' for sufficiently large and continuity of *%,, that *,x0 ( k) - o.(0
k. Thus, exp (A;k) cannot converge uniformly on compact (Sufficient): Let tk be any sequence in 9 such that *,a(ek) -'
subintcrvals of (0, co), since this would imply uniform conver- x',,( ) for evcry Xou and withCk - C. Then, from 1lt, -k
gence of its eigenvalue exp (Xk). Letting u = 0, it follows from and the decomposition (8) may be invoked. It follows that
(13) and (16) that ',(eRk, K)) does not converge for every xo.'

In order to prove that K is not robust, we have only left to show Mk [sEk-At INk"--Agi [$A/k- In- e
that *.Q) - + ',,() in the weak* sense, where 6k = [Ek, Ak, for any convergent representation (Ek, Ak, Bk, CO). Suppose
Bk, Ckr To do so, we note that (- l)"'A1 ki < 0 for infinitely many k. Since IAyfl is just the

product of the eigenvalues of Alk, there exists a subsequenlce of

' Iex - X+A. ( - Afk, with at least one real, positive elgenvalue for each kj. It
ak / 0ft follows that A;k' has an cigenvalue Xi - ca. Let u -0 andobserve that j

exp (Afk (-I) ')*BAu (I 0u('j), D* uak -I4k) ) k~k
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where Applying the decomposition (8) to the closed-loop system yields
nonsingular transformautions A and NA such that

r, = (t)e(tA ,) dr. E-A 0 A k(Ak+BKCk)N,= [ 01
A function j6 E 1) can always be chosen such that an eigenvalue r8
of rk, satisfies AA a = , Ck A = I Cs J I

S exp (Q.. t0(t) dt-oo, where all sequences converge. The decomposition (13) miy also

0 be applied to the closed-loop system yielding

Hence, iIrk.I -. a. It follows that rkXOfk is unbounded for
an appropriate choice of x0 and that VPf o,(G,) and [from (13)) *'10.(e (k))=. A P )
*xo,() are not convergent. This contradiction leads us to
conclude that (- l)-'IA&I -> 0 for sufficiently large k. From Lemma 4.3, +430 Q) ' (), and

Appealing to the notation of (22) and (27). we have b,-,, cl * xOU VOl

0 and, if r <n-I 1, . = . .. _ = I. Choose K to ( /l 1, f
satisfy the condition (26). Forr = n - 1, (21) indicates that I + exP(-) Xofk+- CXP 1) *Aku ifa0<O
bjKc > 0; for r < n - 1, (23) implies that b,,Kc, > 0. 41f (o k \k

Defining - B/AU

AA(S)= IsEk-(Ak+BkKkCk)I so, as in the necessity proof of part 1), +/ () Q 'Ix' (/) for
we have any xo, u. Hence, .(P( k)) - *'0,(0)) and K is robust.

2) (Sufficient): This part has already been treated in the
Sufficiency section of 1).

s$I -(Ask + BkK, Ck) -B K*CfkA (Necessary): Invoke the Weierstrass decomposition (9). If (26)
= -KkC -fails and r = n - 1, we have l + BKC< zOsoB 1 * 0and C,

0; hence, there exists a sequence Kk - K such that= IAjlsn + (ckt - j A. I tr(As, + BskKk Csk))$n" I+..

(34) + BKk C< 0 (39)

where ak is defined by for every k. Now define a,", n a,k; (38A, "" " 3 h.l,k
according to

IsAk J- (L.-,+ Bj&kKCi) - IAjSr + I+XS " + (an,. ,k + 0, - 1.X)S' I + + (al k + 0 kX)S+ aOk

From elementary matrix arguments we have, for r < n - I, sl. I - (As + BSKk C,) - BsgkCf. .= -BfKk C, x -(0 + B1KkC/[

IsA - (I_,+ BKC) =(- I)-'b,-,Kcs '' +""
Then

so
I -O a-. ,k -(I + BIKkCI). (40)

limaA= a _(I + bKc ifn-r=. (35) Letting fk(X) = 01kX, we can find a sequence Ek satisfying the
(- 1Y "b,,KcI if n -r> 1. (3) properties in Lemma 4.3; define ak = - 1/4. Since ek - 0 and

From our choice of K it follows that the closed-loop system e(, sgn ek = - sgn as.- I.k, (39) and (40) guarantee that ak - + a*- If

K) exhibits no impulsive behavior in its natural response, i.e., we set

ord e~ K) = rank E = n - 1. Hence, from [112, Lemma 4.31
we know that In EAM 1 01 NA A

IMkIAA(S)INAI =tk(WS- 1) I1 (S-N) (36) L k
I,1 Bk=B, Ck=C

where vok, ak, and X all converge and lim ok = 0. Matching we have that det (SEk - (Ak + BkK, Ck)) has at least one real
coefficients in (34) and (36) yields root Nk > k for each k. As in the sufficiency proof of part 1),

*, 0 (e(k, Kk)) does not converge for some xo, u. Since
tDkk IAjT (37)

liMak=-lira V. (38) X0(Qk)=eXP (--ak)XO--a k CXP (_ck) BAU (41)

From (35) and our choice of K, (- i)y-' lim ak < 0. Hence, in the open-loop system, 4x0.(Qk) - ik0,(e) and K is not

from (38), robust.
If (26) fails and r < n - 1, we may adopt the notation (29) and

(- l)' lim Ok =(- )n - '+l lim ak<O. (30) and observe that b,.,Kc, < 0. Since fast cyclicity, impulse
controllability, and impulse observability guarantee that b,_, * 0

Thus, (- I),-Itk < 0 for sufficiently large k, and and cl * 0, a sequence Kk - K may be chosen so that b._,Kci
< 0 for every K. The remaining arguments are the same as in the

(A -"IAkI s. necessity part of I) with b,_,.k = b,-,, CIA = c,, and "Ylk = 1.0
(-" _ I)" I 0,.Theorem 4.4 is somewhat pessimistic in that, in the strictest.
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theoretical sense, robustness can only be guaranteed when at most Proposition:
one degree of singularity is present in the plant (4) (rank E = n - i) j is fast cyclic iff E .g" U .-.
1). In physical terms this can be interpreted as meaning that a 2) (r," U .gv- ) l 1, In z,, is open in e.
static compensator can handle only a first-order unmodeled 3) £, C' . , n . is dense in 2s.
dynamic element. In our opinion, this indicates that some basic Proof.
assumptions which are as yet not well understood are convention- I) Let (E, A, B, C) be any representative of t. If r - ord ,
ally placed on system models in engineering practice, the Weierstrass decomposition (9) shows that rank E = r + rank

For a mathematical explanation of how nonrobust compensa- Af. But t is fast cyclic if and only if either r = n or rank A1 = in
tors may fail to stabilize a system, consider the matrix condition in - r - 1. Hence, t is fast cyclic iff rank E = n or rank E= n -
part 2) of Theorem 4.4. This condition determines an open affine 1.
half-space in the set tVf "' of compensation gains K. Examination 2) Let
of the proof of Theorem 4.4 reveals that, for systems which are
fast cyclic, impulse controllable, and impulse observable, a static = [E, A, B, C .fl = (" U £gn- ) n' j,£ C 2.
compensator results in positive feedback either for all admissible
perturbations simultaneously or for none at all. The half-space of and apply the decomposition (9). Then Af is cyclic, and Ker A, C

robust feedback gains is simply the set of all K with the Im A1 . Since t is impulse controllable and impulse observable.

appropriate sign to guarantee negative feedback for all perturba-
tions of the system (4). The system (6) illustrates this point. The fm A/+ Tm B1= Tm A,+ Ker A,+ im B1:-,
robust gains are simply those satisfying K < 1. On the other
hand, part 1) of Theorem 4.4 maintains that unless the plant is fast
cyclic, impulse controllable, and impulse observable, the class of sot E , n ,8£ (see 1141). It follows that
admissible perturbations is so broad that any compensator results
in positive feedback with respect to some perturbation; hence, no n -(v" n c,-') nl £,C U £..

compensator is robust. This is illustrated by (2) and (3).
Another important point to note at this stage is that, although all We know from [131 that .gt and £f. are both open, so 0 is the

definitions and technical arguments until now have been couched finite intersection of open sets.
in terms of sequences, each statement applies equally well to nets 3) It was shown in I131 that Ce. Cl Z"-' is dense in .. Our
in the various topological spaces. This observation is important, result follows immediately, since £,g nl c,, D Z,,. 0
since the space of distributions J) , does not satisfy the first axiom Note that part 3) is stated in terms of the singular subspace s.

of countability (see [201). Since every point in the regular subspace £n is necessarily fast
To conclude this section we compare our results to those of 151. cyclic, impulse controllable, and impulse observable (see [141)

Specifically, [5, Theorem I I shows that, for any system and since £' is dense in ., density of (Z" U £n- I) (l Z,, n 2,.
in £ is trivial. Part 3) is a much stronger result.

.x=Ax+ Bu

y = Cx (42) VI. DISCUSSION AND CONCLUSIONS

In this section we discuss some of the implications of our theory
and any compensation matrix K, there exists a singular perturba- and use these to suggest further research. Theorem 4.5 shows that
tion of (42) of the form (1) which destabilizes the closed-loop a generic class of systems can be robustly compensated using
system. (The result of 151 is somewhat more general in that it static compensators K. This does not mean, however, that the
applies to all dynamic compensators which are proper but not complement of the open and dense subset (ZgR U ,,R -1) rl Z,, n
strictly proper.) According to Theorem 4.4, if we take such a 2.£ does not contain interesting systems. On the contrary, it is
perturbation and set e = 0, we obtain a nominal system easy to show that all systems of the form (4) with r < n - I and

[1 01 [A;: A12] [BI] A22 nonsingular lie outside the generic class described by
J r A2  A2  lB u Theorem 4.5. Another interesting observation is that even a

0 L . j + B system which does lie in the generic set can be trivially augmented
so that it sits outside the generic set in a higher dimensional system

y=IC C2lx (43) space. For example, the dimension of(4) may be increased simply
by defining a new (scalar-valued) state variable z = 0 and noting

which must either fail to be fast cyclic, impulse controllable, or that
impu'-se observable. For example, setting e = 0 in (3) yields a
system of the form (43) which can be shown to be not fast cyclic. E  0] [fl [A 0] [x] [B ]

Whilk the result of 651 illustrates that a specialized class of [0 0Jt 0 2W + u
parasitics can lead to closed-loop destabilization, our results
characterize the same phenomenon but in the context of a broader (44)
class of perturbations and a larger family of nominal systems. For Y= [C 01 (44)
example, our Theorem 4.4 applies to systems of the form (43) Li

with A22 singular (as long as IsE - Al I 0 is satisfied), while (51 System (44) is a member of £(n + 1, m, p). It is easy to show
considers only the case of A22 nonsingular. Our result also shows that (44) is not fast cyclic and, hence, cannot be robustly
when destabilization can occur as a result of perturbations to a compensated. The latter point can be countered by arguing that
given order; the perturbed order required to destabilize the closed- only variables of interest should be included in a well-devised
loop system in 151 is not specified. state-space model; therefore, the variable z would never be

present.
V. GENERICITY There are at least a couple of avenues of research which might

eventually resolve these issues. Dynamic compensation is still
We now consider the class of systems (4) for which there exists relatively unexplored in the context of singular perturbations. One

a robust compensator K. The sets of impulse controllable and promising result is 15, Theorem 21 which suggests that, when
impulst observable systes were shown in 1131 it be dense in tile p)ar.tsilics are present, strictly proper compensators are more

system space C. The next result characterizes those systems robust than nonstrictly proper ones. Since 15J treats only the single
which are also fast cyclic, time-scale case, more work needs to be done to see whether this
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result stands up to a larger class of perturbations. As pointed out systems: A geometric approach," Ph.D. dissertation, Univ. Illinois,
in Section 1, the issue of which class of perturbations is 1980.menigfl n gvn ysemanlyisi of fidnetltro- 1131 . "Topological aspects of controlabilhty and observability on the
meaningful in a given system analysis isof fundamental inipor. ild of singular and regular %ytcm%,,. J. Math, Anal. Appl., in
tance. Our main results can in fact be proven under it sonewhat press.
more general definition of system perturbation than the one 1141 ."Controllability, observability, and duality in singular sys.
provided here (strong convergence). However, preliminary work tems." IEEE Trans. Automat; Contr., vol. AC-29, pp. 1076-1082.

1984.suggests that even such a generalization might be too restrictive to 1151 G.C. Verghesc. B. C. Levy, ar.J T. Kailath, "A generalized state-allow a coherent robustness theory to be developed. We intend to spacc for singtular systcms," 1EEE Trans. Automat. Contir., vol.
explore these issues more fully in the future., A(-2,, pp. 8 11-831. 1981
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Abstract

We consider the problem of determining whether each point in a polytope

of nxn matrices is stable. Our approach is to check stability of certain

faces of the polytope. For n23, we show that stability of each point in every

(2n-4)-dimensional face guarantees stability of the entire polytope.

Furthermore, we prove that, for any k:n2 . there exists a k-dimensional

polytope containing a strictly unstable point and such that all its

subpolytopes of dimension min(k-1,2n-5) are stable.
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In this paper we consider the problem of ascertaining whether cetR iM

subsets of R consist entirely of stable matrices. (Here we take stabtifl,

of a matrix to mean that all its elgenvalues are in the open left hal plane A

First we need some definitions. A (convex) polytote 9 in a vector space V i

the convex hull of any nonempty finite subset of V. The dimension of 91 is the

dimension of the affine hull aff(9P) of P. The relative boundary of 9 Is the

boundary of 9 as a subset of the topological space aff(9). A face of 9 is any

set of the form V91, where H is a supporting hyperplane of 9. A vertex of 91

Its a O-dimensional face. An edge of 9 is a 1-dimensional face. A subpol tope

of P is the convex hull of any set of vertices if 1. Finally, a k-dimensiohal

half-vlane in V Is any nonempty set of the form =RnS, where R is a closed

half-space, S is a k-dimensional affine subipace, and SR. (Note that this

implies that the affine hull of 0 is simply S.)

In the robust control literature, considerable interest has been

generated by the problem of determining whether stability of a polytope In

either IRn or Rnxn can be guaranteed simply by checking stability of

low-dimensional faces. (Stability of a vector xERn means simply that the

polynomial sn+xnsn-'+...+x is Hurwitz.) We first note that the cases nzO aid

n=l are trivial; stability of the vertices always guarantees stability of the

polytope. Several recent papers consider the case n22. For example,

polynomial polytopes of a particularly simple structure ("interval

polynomials") were addressed by Kharitonov (1]; he showed that only four

specially constructed vertices need be checked. A more recent -result of

Bartlett, Hollot, and Lin [2] demosiitrates that, for an arbitrary polynomial

polytope checking all edges is sufficient to guarantee stability of W. With

respect to polytopes in Rnxn . Fu and Barmish (3] have shown that stability of
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ail I1--dimensional subpolytopes is insufficient to guarantee stabil ity of .

DeMarco (4] has shown that, for n?3, (n-2)-dilmensional faces are insufficient.

but 2n-dimensional faces are sufficient.

In this paper we refine the bounds of [4J and show that stability of'all

m~dimensional faces is sufficient to guarantee stability of 1P, where

m(n) = {2n-4, n>2

Furthermore, we show that for any n and kSn2 there exists a polytope of

dimension k, containing a strictly unstable point (a matrix with an eigenvalue

A satisfying ReA>0), and such that all its min(k-l,m-l)-dimensional

subpolytopes are stable; hence, in this sense, m is minimal.

2.-Sufficiency of m

Throughout our analysis, we will make extensive use of the fact that any

k n
affine, one-to-one map f:R --+ Rn determines an affine isomorphism between Rk

kk
and f(R ). Among other things, this implies that, for any polytope 1cRk, f( )

is also a polytope of the same dimension as 9; furthermore, f sets up: a

one-to-one correspondence between q-dimensional faces of 0 and q-dimensional

faces of f(9). In addition, f maps each k-dimensional half-plane in Rk into

another k-dimenslonal half-plane (e.g., see (5]). Finally, we note that every

polytope is compact and that the set (xeRkjIxI.Sl) is a polytope whose

q-dimensional faces are generated by fixing k-q entries of x at either ±1 and

letting the remaining q entries vary independently over (-1,11.

With these observations in mind, we prove a result characterizing the

affine structure of the set of unstable points in Rnx
n,
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Lemma 2. 1 Ful'tr (Ills untat)lIe AEIR~ there exist ain (i l ie~

h~if-Planle tcIRnX such thaI 1) AGM and 2) Begl implies B is UhtablIe.

Proof Case I -- A has a real eigenvalue A62:0: Let T=(v W], where v is A&zi

eigenvector corresponding to A0 and W is chosen to, mJ~ake T nonsingul-d.

Clearly, the map f:R n2n1 Pnx determined by

is af fine and one-to-one. Let ft be the (n2-n+l)-dimensional half-plane

&t(f(A'yZ) AV oyER xnl ,Z.jRhn l)n

Then AdH and every matrix in ftis unstable. Since n2-n+lZn 2-M. we need only

select any (n2-m)-dimensional half-plane ft satisfying A49.fc.

Case II -- A has A complex digenvalue pair ao±i~o with dco>O: Let

T=(v w X1, where v4-iw Is an eigenvector corresponding to aO+'iP0 and XKis

chosen to make T nonsingular. Let ftbe the (nZ-2n44)-dimeflsionAl half-plane

&(mT[U Y]TfljerU2:a.2x.2 n-Xl

(trU:2ao describes a 4-dimensional half-plane, since trUz<U,I'.) ftcontFains

only unstable points, since tr Uk,2a0 implies U has at least one eigenvalue A

With Re A~a0 . Also, AsM, since our choice of T guarantees that A has



Pinally, n2-2n44n 2 -m, so the desired Yeci exists.

Next we prove an easy result concerning the intersection of affine sets.

Lemma 2.2 Let V be a p-dimensional Euclidean space, McV a k-dimensiohiid

half-plane, and r a q-dimensional affine subspace with k~q>p. Consider any

vector xosmnrf. There exists a (k+q-p) -dimensional half-plane Yesuch that

Proof By definition, 11=RnS, where R is a closed half-space and S is a

k-dimensional affine subspace satisfying SqtR. There exists an affine subtpace

Ncs'M' with dim S-k+q-p and xoeS. If ScR, let McRnS be any (k+q-p)-dimensional

half-space containing x0. Then icRnSnn_-Ytr. If NOR, let 1t.Rfl. Then xqIH,

since xoallnrcR. Also, dim Ytzk+q-p, since i is nonempty. i

We are now In a position to prove our first main result.

Theorem 2.3 Stability of every matrix in every r-dimensional face of 91

guarantees stability of every matrix in 91.

Proof Our arguments here are similar to those used in (2,Lemma 1). Suppose 50

jsfif uftis-ahle-polytope of dimension k0m. Then there exists an untadble

Mi~atrix AidEbk. From Lemma 2.1, there is a (n 2-M)-;dimensional half plane 111,

conasisting entirely of unstable points and containing Al. Since Mt1 is

unbounded, there exists an A2e*e1 lying on the boundary Of 9) and, hence, in
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RLj',aff(:Pk-1) contains a (k-m-1)-dimensional ha1C-plAne 0t2 §uch thait

Proceeding inductively,-we find that there exists an m-diinnional face Aj n d4>

a point Akc-m*Pm,such that Ak- is unstable.

3'., Minimality-of in

Our next task is to show that mn is the smallest integer such that

stAbility of all i-dimensional faces of 91 guarantees stability of 91.

theorem 3.1 For each integer n2:2 there exists an i-dimensional polytope

containing an unstable point and such that All its (m-l)-diinensional faces are

stable.

Oroof Case I -n2: Consider the affine, one-to-one map

f(x)ui( x]

and the corresponding 1-dimensional polytope 71-if(x)jjxiS1). Each matrix- 'in

has characteristic polynomial Ass 2 sx;hence, each Vertex of 0?(u~)i

-stable, but the point corresponding to x-O is unstable.

Case 11 - n-3: The 2-dimensional polytope

hats characteristic polynomial A(S)=S3+sZ.(I.&X2+y2 )s+i. Each coefficient 6f



.3

s ms ,. land t he ,,orr pondi nig 2f2 Hjrw t trix It t. q1.11I- i

principal second-order minor equal to M2 (y)=x,-y 2 . thus. h ,h -

stable, but the matrix corresponding to x=y=O is unstable.

Case III -- n4: Consider the (2n-4)-dimensional polytope

A routine calculation shows that 9 has characteristic polynomial

n1-4
p(s):(s+l) A(s), where

A(s)=s 4 +2s3 +(2+x Txy Ty)s
2 +(2x Tx+y Ty)s+ 1x Txy Ty-(x Ty) 2

From the Schwartz inequality, it is clear that all coefficients of A are-

strictly positive. The corresponding 4x4 Hurwitz -matrix has- its leading

principal third-order minor equal to

T T T 2 T_ T 2
M 3 (x,y)-4x x+4y y+4(x y) *( x-y y)

Clearly, M3 _>O with equality if and only if x=y-O. Thus the (2n-5)-dImenSional

faces of 1 are stable, but the point corresponding to x=y=O is unstabie U

It is interesting to note that Theorem 3.1 also implies that the

half-planes considered in Lemma 2.1 are maximal in the sense that there exists

An unstable matrix A in Rnxn such that every half-plane of dimension greater

than n2-m containing A must also contain a stable matrix. Indeed. if this

-6--



wel'o not Che I l IV",e 4,'tuien u 'htorsm 2 3 cou Id b# ustd to prove %.az A-

is not minimal.

4. A Stronger Version of the Minimality Theorem

The construction in the proof of Theorem 3.1 is weak in three respects:,

1) The polytope P contains only a single marginally unstable matrix (i.e. a

matrix having all eigenvalues A satisfying Re ASO and at least one with

Re A=0). 2) The construction yields only a polytope of dimension m. 3)

Arbitrary subpolytopes are not considered; thus it is not clear that checking

all subpolytopes of dimension, say, m-1 would not guarantee stability. The

minimality proof would be more convincing if it could be extended to give a

family of polytopes, each 1) contaJning a strictly unstable point (and, hence,

infinitely many unstable points), 2) having -arbitrary dimension k, and

3) having all min(k-lm-1}-dimensional subpolytopes stable.

Theorem 4.2 shows that such improvements over Theorem 3.1 can be made:.

The proof requires a simple lemma. For any normed linear space V, subset flV,

and point rGV consider the distance function

d(rO)=inf-

Let conv(O) denote the convex hull of 0.
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Lemma iiIppD1)5e ' :V is convex, -->o. tw r.-v is any set itich f-ha' ti

for every rar. Then d(lfl)<a for every neconv((u)r).

Proof Each neconv(our) Is of the form n=ccr1-(1-ah)2. where as[O.t] And

,711,72rour. There exist (aj,W2 *( such that i)7-(oje and !72W2'<6. Let

0waI~i-~)U?.Then wiE0, and

=i(0?-0)0(1-a) (772-02H

Theorem 4.2 For any Integers n,k with n2:2 and 1lIkSn2 , there exists a polytope

91, of dimension k containing a strictly unstable point and such that eachkc

min~k-i,m-i)-dimensional subpolytope is stable.

Proof Suppose a marginally unstable polytope ~ fdimension kc is constructedIc O

such that all its min~k-,u-1j subpolytooes are stable. Then, since the set

of stable points in Anx is open and the union of all min(k-im-i)-dimensional

subpolytopes of 91 is compact, the subpolytopes of 91 -91 +eI of the samek k k

dimension are stable for sufficiently small s, but 91, is strictly unstable..

Thus, it suffices to construct any k-dimensional unstable with stablekj

subpolytopes.



If 11-2. It fMy) _ where x. y range ower R; otherwise,. jet.

f(x.y)= -1 0 T

where xyEIn 2. We consider two cases,, first, assume k<m. Define

fk: k --+ Rn x n according to fk [O [oj), where the vectors x and y are

partitioned in any way such that [wel Since each fk is affine and

one-to-one, the set

is a k-dimensional polytope. As in the proof of Theorem 3.1, each matrix in

ak is stable except for the point corresponding to w=z=O. The union of the

(k-1)-dimensional subpolytopes of 4k is compact and nowhere dense in f(Rk);

hence, there exist vectors wo,zoef(Pk) such that

is unstable, but has all its (k-1)-dimensional subpolytopes stable.

Next consider the case k>m. The union of the (m-1)-dimensional

subpolytopes of the m-dimensional polytope T (defined in Theorem 3.1) are

compact and nowhere dense in f(le); hence, there exist xo,yo such that

-9-



has all its (m-1)-dimensional subpolytopes stable, but 0 is unstable. if n=2,

let

g(X.Y.Z)=f(x.y)+[a 1 z 2]

Otherwise, define

z 1 z .3 z n
Zn+ 1 Zn+2 Zn+3 • 2n

g(x,y,z)=f(xy)+ 0 0 Z2

0 0 Znz3n T...Zn2_ 2n+4

In each case, z. 0n - m .  Also let gk8 (X,y,w)=g(x,y,[(z/2)w]), where wR k - 2 n 4

and 6>0. Note that each gk is affine and one-to-one.

Now consider the k-dimensional polytope

ky,w) 1}

If we choose the matrix norm JMJ=maxlmj I , it follows that for every vertex A

of 1ke there exists a vertex A of 0 such that IA-Aji<a. Furthermore, every

(m-1)-dimensional subpolytope of Pke can be expressed as a disjoint finite

union uA ., where each AV is the convex hull of m-1 vertices A1 ... 'AM 1 of

9ka' Suppose Al ... OA qa and Aq+ 1 ... A m1go: let

-10-



Q--convA .... A 1  . - where t ach A. a Verte X of V sat is ying

Ai <a. and let 1'= (Aq4. A } . From Lemma 4.1. eve~ry

Beconv{A 1 ... A m 1 )cconv(nur) satisfies d(B,Q)<s. Hence, for sufficiently

small s, each (m-l)-dlmensional subpolytope of T is stable.

5. Conclusions

Our results demonstrate to what extent the techniques for checking

polytope stability proposed in (2] can be extended to the case of nxn

matrices. We have shown that, without further information describing the

particular structure of a polytope. (2n-4)-dimensional faces must be checked

for stability. Since testing even one such face can be a formidable task when

n is large, and since the number of (2n-4)-dimensional faces grows

exponentially with n. more work needs to be done before a computationally

tractable algorithm can be devised for checking stability. It is our hope,

however, that our work will be useful as an integral part of some future

coherent theory of robust stability.
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Abstract (2n-5) -dimensional faces are CT stable:, hence, the
We consider the problem of determining whether a value 2n-4 is minimal. In this paper we extend the

polytope 7 of nxn matrices is D-stable -- i.e. whether results of [41 to D-stability where D may be any
each point in 9 has all its eigenvalues in a given nonempty. open. convex ,onjugate-symmerric subset of
nonempty, open, convex, conjugate-symmetric subset D C
of the complex plane. Our approach is to check We note that for the cases n=O and nzi our
D-stability of certain faces of T. In particular. for problem has a trivial solution- 0-stability of
each D and n we determine the smallest integer m such vertices guarantees D-stability of the polvtope, To
that D-stability of every m-dimensional face handle na2 we need to partition the family of
guarantees D-stability of P. stability sets D according to the following two

assumptions.
1. Introduction

Let DeC be nonempty, open. convex. and Assumption A. 0 is of the form Df{sfC a<Re s<b).
conjugate-symmetric (symmetric about the real axis).
and define an nxn real matrix M to be D-stable if each where -Sa<bS
eigenvalue A of M satisfies AcD: otherwise. M is
D-unstable. We consider the problem of determining AssumptLon 8: D i - a nonempty. open. convex.

whether certain subsets of An xn consist entirely of conjugate-symmetric set not satisfying Assumption A.

D-stable matrices. To facilitate discussion we begin
with some definitions. In addition. we define m .A(n -4' n>2 and

A (convex) polytope 9 in a vector space V Is the aAe n{ 2 n-4h n>2
convex hull conv(0) of any nonempty finite subset OcV. ma(n)=2n--2. We intend to show that m 8 and m are the
The dimension of P is the dimension of the affine hull values of m that we seek for cases A and B.
aff(?) of '7. A face of 9 is any set of the form IV'T.
where fl is a supporting hyperplane of P. Finally, a
k-dimensional half-plane in V is any nonempty set of 2. Sufficiency of.m andm
the form M=ROS. where R is a closed half-space. S is a Throughout our analysis. we will make extensive
k-dimensional affine subspace. and StR. (Note that Trouhout our any we one tnsiMe
this implies that aff() is simply S.) use of the fact that any affhe, one toone map

In the robust control literature, considerable f:l'k - 3 n determines an affine isomorphism between
interest has been generated by the problem of Ik and f(Rk )  Among other things. this implies that.
determining whether a family of linear systems can be a
shown to consist entirely of D-stable systems by for any polytope R . f(P) is also a polytope of the
checking D.-stibility of certain representative members same dimension as P:, furthermore. f sets up a
of that family. In many cases, such problems can be one-to-one correspondence between the q-dimensional
reduced to that of determining whether a polytope or faces of 5 and the q-dimensional faces of f(?). In

other subset of Pn or Rnxn consists entirely of addition. f maps each k dimensiona] half-plane in Rk

D-stable points [1].[2]. (D-stability of a vector into another k-dimension-i' half-plane le g see [51)

xeen means simply that the polynomial snixnsn.., Finally. we note that every polytupe is eompact and

has all its roots in 0.) We are primarily interested that any set of the form (xdR.IIIII Sr,, where ,>0. is
in the technique of checking D-stability of lowerdimesioal ace ofa plytoe i orer o garatee a polytope whose q-dimensionai faces are generated by
dimensional faces of a polytope In order to guarantee fixing k-q entries of x at either tr and letting the
0-stability of the entire set. rmiigqetisvr nesnetyoe

Most "facial" results pertain to continuous-time remaining q entries vary independently over [-a.7].{C)stability -- i~e. where 0 is the open left half With these observations In mind, we prove
(CT) saiiy-ie.wee0Jthopnlfhlf result characterizing the affine structure of the set
complex plane. The seminal result (3] for polynomial nxn.
polytopes motivates the approach. In (3] it is shown of 0-unstable points in n
that a polynomial polytope of a particular simple
structure (an "interval polynomial") is CT stable Lemma 2 1 1) If 0 satisfies Assumption A then for
whenever four specially constructed vertices are CT each D-unstable me nxn there exir an
stable, A more recent result 11) demonstrates that, ere
for an arbitrary polynomial polytope. checking all (n-m A-dimensional half-plane lcnR such that a) MGMedges is sufficient to guarantee CT stability. With a

to plytoes i pn is as ben sownand b) Neil implies N is 0-unstable.

respect to polytopes in nxn . Is has been shown (41 2) If D satisfies Assumption B. then for each
that 1) an arbitrary polytope is CT stable If all nxn
(2n-4)-dimensional faces are CT stable and 2) there 0-unstable M nR there exists an (n2 -m 1-dimensional
exist CT unstable polytopes such that all half-plane R nxn such that a) MGM and b) N4R implies

N is D-unstable.
This work was supported in part by NSF Grant No.

ECS-8612948 and by AFOSR Grant No. AFOSR-88-0087.
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From dimensionality arguments., such a plane must de sufficiet. T pol ue- 1 p tbie k
intersect a (2n-4)imensional face of 1. (See determining whether a posytop Is scable to(it 1ec iding whether several low-dimensional[4J for detaiis.) - polytopes are stable. Our result has certain

theoretical 3gnifiance: however, more wor
3.... ....f . needs to be done before it can be decided whether
II thhb section we show that. for every Integer the result will help to reduce the computatiunal

n. there exists a polytope nRxn containing an 6turden inherent in robust system design.
unstable point and such that all
(2n-5)-dimensional subpolytopes of 1 are stable,
Hence. we conclude that checking stability of REFERENCES
k-dimensional subpolytopes of 9', for any k.2n-4 (31 V. L. Kharitonov. "Asymptotic Stability of at-
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A routine calculation shows that 9 has Proceedings of the American Control Conference,

characteristic polynomial p(s)-(sll)n 4 A(1s),.
where (3] M. Fu. B. R. Barmish. "Stability of a
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Clearly, M 3O with equality iff x-y-0. Thus. 9

consists entirely of stable points, except for
the relative interior point corresponding to
x.y-O. We conclude that checking
(2n-5)-dimensional faces (in this case the entire
boundary of 9) is insufficient to guarantee
stability.

Comments 1) The preceding example can be
strengthened by adding el to P, where e is
sufficiently small. This yields a polytope with
stable (2n-5)-dlmensional boundary, but
containing a ball of strictly unstable points.

2) Since the union of all (2n-5)-dimensLonal
subpolytopes is nowhere dense, shifting the

parameter set j[xjjs by an arbitrarily small

vector yields an unstable polytope with all
(2n-5)-dimenstonal subpolytopes stable.

3) The polytope 9 described above can be
transformed into a similar example with any given
dimension either by removing parameters or by
using P as a face of a higher dimensional
polytope.

Note that the constructions described in 1).
2). and 3) can be carried out simultaneously to
given a stronger but algebraically mossy version
of the minimality proof offered above.
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Abstract

We consider the problem of determining whether a polytope T of nxn

matrices is D-stable -- i.e. whether each point in :P has all Its eigenvalues

in a given nonempty, open, convex, conjugate-symmetric subset 0 of the complex

plane. Our approach is to check D-stability of certain faces of 1P. In

particular, for each D and n we determine the smallest integer m such that

D-stability of every m-dimensional face guarantees D-stability of 1P.
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Let OcC be nonempty. open, convex, and conjugate-symmetric (symmetric

about the real axis), and define an nxn real matrix M to be 0-stable If each

eigenvalue A of M satisfies ReD; otherwise, M is D-unstable. We consider ihe

problem of determining whether certain subsets of Rnxn consist entirely of

0-stable matrices. To facilitate discussion we begin with some definitions.

A (convex) polytope 9 in a vector space V is the convex hull conv(Q) of

any nonempty finite subset QcV. The dimension of 9 is the dimension of the

affine hull aff(9) of 9P. The relative boundary of 9 is the boundary of -1' as a

subset of the topological space aff(9). A face of 91 is any set of the form

fM9', where 11 is a supporting hyperplane of 9. Finally, a k-dimensional

half-Lane in V is any nonempty set of the form X=RnS, where R is a closed

half-space, S is a k.-dimensional affine subspace, and SjR. (Note that this

implies that aff(R) is simply S.)

In the robust control literature, considerable interest has been

generated by the problem of determining whether a family of linear systems can

be shown to consist entirely of D-stable systems by checking D-stability of

certain representative members of that family. In many cases, such problems

can be reduced to that of determining whether a polytope or other subset of n

or Inxn consists entirely of D-stable points [],[2]. (D-stability of a

vector xe n means simply that the polynomial sn+Xnsn-tL..+xl has all its

roots In 0, where xj is the ith entry of x.) We are primarily interested in

the technique of checking 0-stability of lower dimensional faces of a poLytope

in order to guarantee D-stability of the entire set.

Most "facial" results pertain to continuous-time (CT) stability -- i.e.

where D is the open left half complex plane. The seminal result [31 for

polynomial polytopes motivates the approach. In [31 it is shown that a



po L y tYo il I l I p , I ytop . of a pa r t i eul I ar s imp Le ititct.tt ' (M | "" ' .

polynomial") is CT stable whenever four specially constructed vertices 'Ire (T

stable. A more recent result (11 demonstrates that, for an arbttrary

polynomial polytope, checking all edges is sufficient to guarantee CT

stability. With respect to polytopes In IRln. It has been shown (41 that

1) an arbitrary polytope is CT stable if all_ (2n-4)-dimensional faces are c

stable and 2) there exist CT unstable polytopes such that all

(2n-5)-dimensional faces are CT stable: hence, the value 2n-4 is minimal. In

this paper we extend the results of (41 to 0-stability where D may be any

nonempty, open, convex, conjugate-symmetric subset of C.

We note that for the cases n=O and n-l our problem has a trivial

solution: 0-stability of vertices guarantees D-stabilit'y of the polytope. To

handle W2 we need to partition the family of stability sets D according to

the following two assumptions.

Assumption A: D is of the form D=(sC Ia<Re s<b), where -e.Sa<bS.,

Assumption B: D is a nonempty, open, convex, conJugate-symmetric set not

satisfying Assumption A.

In addition, we define m (n)-{ n=2 and mB(n)= 2n-2 . We intend to showIn ddtio, e dfie A~n n-4, n>2B

that mA and m. are the values of m that we ieek for cases A and B.

2. Sufficiency of N. and mB

Throughout our analysis, we will make extensive use of the fact that any

affine, one-to-one map f:Rk -# n2 determines an affine isomorphism between k

and f(A ). Among other things, this implies that, for any polytope 9cAk  f(9)

is also a polytope of the same dimension as 9; furthermore, f sets up a
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one to onio cotr'espoildence between the q-timensional faces o f A mitt qiti

q--dcimensional faces of f(). In addition, f maps each k-dimegsjonal

half-plane in Rk into another k-dimensional half-plane (e.g. see 151).

Finally, we note that every polytope is compact and that any set of the form

{xaR I nx =,,Sr} , where r>O, is a polytope whose q-dimensional faces are

generated by fixing k-q entries of x at either ±r and letting the remaining q

entries vary independently over (-rr].

With these observations in mind, we prove a result characterizing the

affine structure of the set of D-unstable points in R

Lemma 2.1 If D satisfies Assumption A (respectively, Assumption B), then for

each D-unstable MeRnxn there exists an (n2-mA)-dimensional (respectively,

(n2-mB)-dimensional) half-plane OcRnxn such that a) Mul and b) NOl implies N

is D-unstable.

Proof Suppose Assumption A holds. If a=--,b=-, the statement is vacuously

true; otherwise, we need to consider two cases.

Case I -- M has a real eigenvalue A0oD: Let T-[v W], where v is an

eigenvector corresponding to AO and W is chosen to make T nonsingular.

Clearly, the map f:Rn2 -n+l -4 Ixn determined by f(A,y,Z)=T[A Y]T -I is affine

and one-to-one. If Ao<a, let I=(-oAoJ and let 9 be the (n-n+l)-dimensional

half-plane It=(f(A,y,Z)I jAI,yeRlxn 1,Ze.nlxn-}. If a=--, then Ao>b so we set

Is[Ao,e) and construct i in the same way. In either case, Me and every

matrix in i is D-unstable. Since n2-n+l?'n-m At it remains to select any

(n-mA)-dimensional half-plane 0 satisfying MecRd.

Case II -- M has a complex eigenvalue pair ao±i~o with ao>O: Let

T=(u v W], where u.iv is an elgenvector corresponding to aO+iAO and W is

chosen to make T nonsingular. If ao<a, let i be the (n2-2n+4)-dimensional

-3-



half plane i-10 ]T trX t'52co' . ,YeR , ZeIR" I tr X :cto descriles ,

4-dimensional half-plane, since tv X-<X,I>.) I contains only I)-u1stable

points, since trX12ao implies X has at least one eigenvalue A with Re A-<o.

IT ao>b, i is defined by tr Xt2ao, and the same reasoning holds. In either

case, Met.

Now suppose Assumption B holds. We again consider two cases. Case I -

X has a real elgenvalue AgoD: Again let T=(v W], where v is an eigenvector

corresponding to A0 . Since D is convex, either (-m,Ao]nD=O or [Ao,M)nD=O. In

the former case, let i be the (n-n41)-dimensional half-plane

&.(T[A Yfl IASAo,yeRlxn1 ,z4Rn-lxnl}. For the latter case, alter the

definition of W by substituting 'AZAo" for " oASA". In either case, Me and

every matrix in i is D-unstable. Since n2-n+l>n2 -mB , it remains to select any

(n2-mB)-dimensional half--plane 9 satisfying Ma.cIt.

Case II -- M has a complex elgenvalue pair *o±1oED: Let T=[u v W),

where u'iv is an eigenvector corresponding to a04io. Since D is convex,

there exists a half-space 1cC such that ao+i$osfl and VnD-0. Let M be the

(n2-2n+2)-dimensional half-plane

M-{T -a Y yTI +iOmfl;x,yeR :Z4
0 0z

Clearly, M contains only D-unstable points, and MGM. 0

Next we prove an easy result concerning the intersection of affine sets.

Lemma 2.2 Let V be a p-dimensional Euclidean space, 3VcV a k-dimensional

half-plane, and r a q-dimensional affine subspace with k~q>p, Consider any

vector xoe1MV. There exists a (k~q-p)-dimensional half-plane i such that

xoexcxnr.
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P roof By cte i *Lt, R , S, whe re R is a clsed haI If -33Pce antt ; 1 .

k-dlmensional affine subspace satisfying StR. There exists an affine subspace

ScSnr with dim!S;k+q-p and x0eS. If ScR, let icRnS ne any (kiq-p),dimenstonal

half-space containing x0 . Then icRnSnr=xrir. If SR, let inRnS Then xo e.

since x0oRCncR. Also, dim i=ksq-p, since i is nonempty.,

We are now in a position to prove our first main result.

Theorem 2.3 Under Assumption A (respectively, Assumption B), D-stability of

every matrix in every mA-dimensional (respectively, m -dimensional) face of 9

guarantees D-stability of every matrix in 91.

Proof Suppose Assumption A holds., Our arguments here are similar to those

used in (2,Lemma 1]. If Tk is a D-unstable polytope of dimension k>m A , there

exists a D-unstable matrix MXe0k. From Lemma 2.1, there is an

(nz-mA)-dimensional half plane 01 , consisting entirely of D-unstable points

and containing MI. Since 01 is unbounded, there exists an M2*01 lying on the

boundary of Nk and, hence, in one of its (k-1)-dimensional faces 9k-1. From

Lemma 2.2, the intersection 91naff(Nk.j) contains a (k-m A-tI)-dimensional

half-plane X2 such that M2e9 2. Proceeding inductively, we find that there

exists an mA- dimensional face 7n and a point Mk-m*Pm such that Mk-m is

D-unstable.

Under Assumption B, the same proof holds If we replace mA by mB.

3. Minimality of mA and mB

Our next task is to show that mA and m8 are the smallest integers such

that D-stability of all mA-dimensional or m -dimensional faces of 5P guarantees

D-stability of 9 under Assumptions A or B, respectively. In order to prove

-5-



this we need a lemmt which may be interpreted its ct mtu!LIv* t),thI ' .t(,lsI (A

L'Hospitai's rule. For any kxk matrices Q and R, we use the notation Q>O a1d

R<O to signify that Q is positive definite and R is negative defitite.

respectively.

Lemma 3.1 Let OeUcW with U open, and let ele 2:U - I2 be C2 functions. In

addition, suppose eL(O)=e 2(0)=O,

aI 8e-l - o = o, 21 < 0
ax ax ax o ax 2  -
a'x=O- 2 x=-0' "''x=O= I' x=

For every 6>0 there exists an e>O such that O*IlxlI<z implies e2(x)<- Iet(x):.

Proof From [6,p.340J, for every Q>O there exists an e>0 st - that 1lX1I<2

implies

aej 1 Ta2ej
ei(x) - ei(O) - le O- x -i - x

ax II< 1 ( a

x TQx

Setting Q - 2  yields
ax2  l =

i1T
je, (x). < (5 e2(x)* +1xTQ=
x T x TQ x T.. < 6 I

and, from (1), e2(x) < (6-})xTQx < 0 for x*O. Hence, for xO,

e 2 (xx~jjjej(x)l = ej(x)j x TQx i ( -y -.

I(e2(x)s-x Qx) - iT e (x) + 1
1 2 ~ x~x e(xr~ Qx 1 2 2 1+6

x TQx

Thus, e2(x)<-Ilel (x).

Now we can prove our second main result.



[heol-eil ,5.2 Stup ,s' 1) satisfies Assumption A (rspective ly, Assumption B).

For each n there exists an mA dimensional (respnctivety. mBdimensional)

polytope 91CR
nxn containing a D-unstable point and such that all

(mA-I)-dimensional (respectively, (mB-l)-dimensional) faces of T are D-stable.

Proof Under Assumption A we need to consider nine cases.

Case I -- a>--,b<-,n=2: Consider the affine, one-to-one mapb: x
f(x) = _

and the corresponding one-dimensional polytope 9=(f(x)jIxlSi}. The point in 1P

corresponding to x=O is clearly D-unstable., It suffices to prove that the

characteristic polynomials A+ and A- of f(x)-bl and at-f(x), respectively, are

Hurwitz for all x*O. This is in fact true, since A+(s)=s2+ *-s-x and

- 23 (b-a) 2

A(S)=s +3(b-a)s _--- 2x have positive coefficients for x*O.

Case 11 -- a>--,b<-,n=3: Let

f(x,y) = b -

It is sufficient to show that the characteristic polynomials &+ and A- of

f(x,y)-b[ and a[-f(x,y), respectively, are Hurwitz for [ ] *0. A
+ 3 b-a 2 2 2 b-a

straightforward calculation yields A (s)=s + is(l+x +y2)s+- and
2 a

3 5 2 2 2 2 b-a 2 2 2
A(s)=s + (b-a)s +(i+x +y +2(b-a) )s+ -2(l+2x +2y +(b-a)2). Each polynomial

has positive coefficients for [X]O. The fact that they are Hurwitz follows

from positivity of the second-order leading principal minors M; = b-a (x2 y2

and M = b-a (4+3x 2 +3y2 +9(b-a)2) of the corresponding 3x3 Hurwitz matrices.

-(4.3x .b-ya+9-4-a

2 2

b1 -xT

Case III -- b>-o-,a<o-,n>3: Let f(x,y) -1 -yT

XYen-2. a bS ( -a n-4^
where x,y,eR - . A tedious calculation shows that + (s) = (sA-=-) (s) and

-7-



b-.,a t [i (S l r
A (s) we(sre----)

^- 4; 3 T 3T 3 )
- (

4 s~-(-~ 3  T T 13 2 2 3 T 3 T 3 2
(s) = +3(b-a)s +(1+x x+y y+4(b-a) )s +(b-a)(+ ix x+ y y+ (b-a) )s

x Txy Ty-(x Ty) 2+(-_-)2( 12xTx2yTy#(b-.a)2 )

From the Schwartz inequality, A and A have positive coefficients when [=]*0.

Furthermore, the third-order leading principal minors of the corresponding 4x4

Hurwitz matrices of A and A are

M (s) _ (a)2(2( +(-)2)(xTx+yTy)+(xTxYTY)2 *4(xTy) 2 )

-9 T 9 T 9 T T 2 2 2
M3 (s) (2+ x x+7y y+ (x x-y y) +(x y)2)(b-a)

2(7+63 T 63 T 4 81 64 8(-X+ Fx y y) (b-a ) 4+-( b-a, 6

Since M+ and M are positive, A and '- and, hence, A and A are Hurwitz.
3 3

The remaining six cases are handled similarly by choosing all eigenvalues

in the interior of D, except for one or two on the boundary of 'D. For

example, for a>--, boo, n>3, set

f(x,y) = - a aY T

*x y (a+l) 1,

Adopting Assumption B, suppose D is not of the form (sIa<Re s<b. Since D is

convex, there exists a real a0 D such that the line L={ao~io ,I A) satisfies

LO0. Since D is conjugate symmetric and open, there exists a 00>0 such that

ao±io are boundary points of D, but a0oi$ED when 101<o. Furthermore, there

-8-



exists d 6>0 such that ao±66). Again invoking convexity, the open diamond

d int conv(ao±6Ao,ao±iPo} is contained in D. To simplify the problem,

consider the open diamond d =8 L(d -ao)=int conv(±i,±6}. We need only

construct a single potytope 9 containing a matrix with a pair of eigenvalues

at ±i and with all m B-dimensiona] faces consisting of matrices with all

eigenvalues in d: then 0o01aoI would then satisfy the desired properties with

respect to d6'

Consider the (n2-2n+2)-dimensional polytope

Fw l+x yT. W
~P= -1+-x -W zi T~ e

y z 0 A

where y,zeR n-2 . Clearly, P has a D-unstable point M at w=x=O.y=z=O. We will

show that for sufficiently small a, every pint in 91 except M is D-stable.

Hence, 91=9 satisfies the desired properties.

Case I -- n=2: Each point in 9 has characteristic polynomial

2 2 2 2_ 2 1/2
i(w,x,s)=s 2l-w -x and hence has elgenvalues ±ti(1-w -x )1/2 Let

(1+5) 2

2

Case II -- n=3: Each point in 9e has characteristic polynomial

A(w,x,y,zs) = s3+(1-w 2-x 2-y 2-z 2)s-(w(y 2-z2 )+2xyz)

Letg~wx~~z,,~)= Re A(w,x,y,z,a+i0)1
Let g(w,x,y,z,ap) = I A(w,x,y,z,a+i0)j. It is easy to see that g is a

polynomial function and, hence, analytic. A straightforward calculation shows

0
0
0

-9-



rhus' . V Ro tht'im LRPie it function theorem, there exists 1 1un ique .ana'lytitt:

fun1ction h:11 - R 2such that h(O)= 11  and g.(w,x,y,z.,h(wx~y~z))=0 for e~vtry

(W x y ZI TEU.

Next, let [']=h-[O]. A tedious computation shows
2e 1

ae1  ae2 , a 2el =0 32e2

[~''')0' [0] (wxy,z) [WXyZ20] a(w,x,y,z)2 [0]

From Lemma 3. 1, there exists an e>O such that e2(w,X,Y,Z)<-1ieL(w~x,y,Z)
Ta

whenever 0*II~w x y z] T iI<. Since el and e2 are continuous, we may also assume

:eiicl; i=1,2. Returning to h= [h,], it follows that

h2(W,X,Y,z)<1-1Ih(w,x,y,.)I, 1h2(W,X,y,Z)1<i, and jhj(w,x,y,z)-1j<1 for all

[w x y ZI T 0. Hence, hed.

Case III -- n>3: We have

A(w,x,y,z,s) = s 4 +(1-w -X 2_x Tx-y Ty)s 2-(wYT Y-axy Tz-wz Tz)s+y Tyz TZ-(y TZ)2

Let g(w,x,y,Z,a,$i liRe A(w,x,y z a+io)j Again, g is a polynomial function;

in this case

0

0
0
0
*1

Thus there exists an open Uc n2with 0.U and h:U IR2 such that ()I

and g(w,x,y,z,h(w,x,y,z))=0 for every [w x y z] T Q. Let ej =h-[O]. Then
2e 2

=aa20, 2 el = , a 2e2

a(w,x,y,z) 0' w xy~z) ' (w'x'y'z) 2  0' (w,x,y,z) [ 0]

-10-



Applying Lemnma 3.1 as in Case 11. it follows that h(w.x.y.zied 6 for every

[w x y zI rO.

Note that Theorem 3.2 also implies that the half-planes constructed in

Lemma 2.1 are maximal in the sense that there exists a D-unstable matrix M in

Rnxn such that every half-plane containing M of dimension greater than n2-mA

or n2-mB must also contain a D-unstable matrix. Indeed, if this were not the

case, the arguments in Theorem 3.2 could be used to prove that mA and mB are

not minimal,

4. Conclusions

Our results demonstrate to what extent the techniques for checking

polytope stability proposed in (ij and (31 can be extended to the case of nxn

matrices. We have shown that. without further information describing the

particular structure of a polytope, either (2n-4)-dimensional or

(2n-2)-dimenslonal faces need to be checked for D-stability, depending on the

structure of D. Since testing even one such face can be a formidable task

when n is large, and since the number of (2n-4)-dimensional and

(2n-2)-dimensional faces grow exponentially with n, more work needs to be done

before a computationally tractable algorithm can be devised for checking

D-stability. It is our hope, however, that our work will be useful as an

integral part of some future coherent theory of robust stability.
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. [tit ro(Wc t io n

The theory of state-space realizations for strictly proper ratiotnal

matrices has been thoroughly studied (e.g. see [161). Mor,' rI, centy1.

techniques for handling improper transfer matrices have been devisud (see

[1411. In this paper we extend those ideas to dhe perturbational case - i.e.

where a system is described by a convergent sequence of rational matrires

(possibly improper). A realization is then a sequence of (generalized)

state-space systems. The problem is made nontrivial by imposing the

constraint that the matrix entries of the realization sequence should also

converge.

Part of our motivation for this problem comes from the study of robust

control problems -- specifically from those dealing with order uncertainty and

singular perturbations. For example. the robustness problems addressed in

tl-31 are based on singularly perturbed system models. Physical systems are

invariably subject to some variations in parameters, often resulting in

changes in model order. It is desirable, therefore, to design compensators

which meet performance criteria independent of system perturbations. Many

robust control theories (e.g. (4]) emphasize input-output performance

characteristics. Our intention is to develop some fundamental tools for

examining robuistness problems associated with a system's internal structural

properties.

One way to approach this problem might be through the application of

algebraic system theory (see,e.g.,[17]). In this setting, the transfer

function sequence is viewed as a rational function over the ring c of

convergent real sequences using pointwise operations. Unfortunately, we will

see that existing results in algebraic realization theory apply to our case

only marginally. This is due to three key facts: 1) The ring c is not an

1
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integral dontain 2) Most results in algebraic realization theory deal only

with the case of proper transfer functions. 3) An abstract version of tlhe

Weierstrass decomposition t'or matrix pencils over a ring does not yet exist.

Nevertheless. our f,,eling is that the properties of sequences of transfer

functions are sit Lciently important from the point of view of robust control

theory that they deserve separate treatment, not only for the sake of

mimicking standard resul[tS from the algebraic theory,, but also in order to

obtain deeper insight into the specific structure of realizations over this

particular ring.

From an analyt ic perspective, considerable work dealing with

perturbations of rational matrices has appeared (e.g., [4].[71-(121). In

these papers various rational matrix topologies have been proposed, motivated

by a variety of conrvol problems. The closest of these to our work are

[lO1-[12]. where a singular perturbation theory for transfer functions is

developed and a specific form of realization is given. However, (lO1-(121 do

not explicitly address those problems dealing with the existence of

realizations in general and. in particular, the minimal realization of

perturbed systems. In (4] rational matrix convergence is characterized in

terms of the "graph metric" which is used to address certain problems in local

simultaneous stabilization., It is easy to show that the graph metric induces a

topology which is very different from that corresponding to simple system

parameter convergence. The work of [71 and [9] also treats the problem of

topologizing the set of rational matrices and is closely related to ours, but

again does not examine the realization problem., Our work is motivated solely

by realization and robustness issues; our constructions are designed to yield

the simplest definition of convergence corresponding to convergence of system

parameters.
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We are mainly concerned with the interplay between two types of [.rt

system representations. First. let R(s) be the set of all rational functions'

over (R. and let R(s) be the set of rxm matrict-4 over R(s). Next. consider

(generalized) state-space systems

Ex = Ax Bu (1)

y =Cx.

where E and A are nxn real matrices satisfying the standard regularity

assumption det(sE-A)SO. B is nxm, C is rxn. and E may be singular. For tht

sake of brevity, we identify the system (1) with the matrix 4-tuple

aC(E,AB,C)In(21 m r). The transfer matrix of (1) is
H(s) = C(sE-.A) 18 C.adj(sE-A).B )rm

Het ( sE-A) e R(s . (2)

Throughout the paper we assume that the values of m and r are fixed; we

consider n to be a variable.

Definition1.1 1) A state-space system aeR n ( ni -m+r) is said to have dimension

n. In this case. we write dima=n.

2) If a rational matr. . H is of the form (2), we say that (E,A,B,C) is a

realization of H.

With regard to (1) and (2), a (nonperturbational) realization theory

already appears in (141. We now summarize the main results of this theory.

Theorem t.2 1141

1) Every rational matrix has a realization.

2) The minimal dimension over all realizations of H, denoted /j(.), is

j(H(s = (Hs)) = W((H -))s fsa
where W(.) is MacMillan degree, and Hs and Hf are the unique strictly

proper rational matrix and polynomial matrix, respectively, satisfying

H=H s Hf '

3



3) A 4 -tupte u is a minimal realization of some rational matrix H if and

only if a is controllable and observable (as defined in (8j).

4) If a =(E A ,B X ) and a =(E.A2B.C ) are inimal vealizations of the1 1' 1 1 2 2' 2,B 2 ) ar2iia elztoso h

same rational matrix, there exist nonsingular matrices M and N sucth thAt

Ei.ME N. A j=MA N, B : MB and C =C N.2 - 1 2 1' 2 1

The results of our present work may be considered to be a generalization of

Theorem 1.2 to the case of rational matrix sequences Hk).

In Section 2 we will choose a natural definition for convergence of

rational matrices. Working from this definition, we will consider sequences

H k-H in I(s) r m and attempt to characterize those sequences (ak} in Rn(2nm~r)

such that 1) ak converges to some a in the matrix sense, 2) ak is a

realization of Hk for sufficiently large k. and 3) a is a realization of H.

We view this approach as a way of modeling the possible perturbations in the

internal structure of a system corresponding to a given perturbation in the

input-output description (Hk}.

In our realization theory, we will see that Theorem 1.2. part 1) remains

true (Section 5). Corresponding to the expression for M in part 2), in

Section 6 we will define and give an explicit expression for a degree function

which e-quals the dimension of all "minimal realizations" of a sequence of

transfer matrices. It will be shown that properties 3) and 4) do not hold as

stated for sequences; however, we will discuss important special cases where

similar statements do hold. In Sections 5 and 6 we will also discuss the

connections between our work and the standard algebraic realization theory

(see [17]).
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2, Convergence in the Space of Rational Matrices

We first consider the problem of defining a topology on IR(s) and later on

R(s)rm Convergence in R(s) will be defined in the most natural way such that

small perturbations in R(s) correspond to small perturbations in the

coefficients of numerator and denominator of the rational function. To begin.

we must define convergence in the set R[sl of all polynomials over IR. siippose

P k:k=1.2_.. and P are polynomials in R(s.

Definition 2.1 We say P converges to P if there exists an integer q<- such

that deg P 1q: k=1.2..... deg P-.q, and a lk-a :i=O.....q. where

Pk(S) -aqsq ... aks + aOk: k=1.2 ...

P(s) a q a s a
q 1 0.

Remarks

1) If we regard Pk eR[s]; k=1,2.-,- as functions over E. we might be tempted

to define Pk -.-P when lira Pk (S=P(s) for any seC. But we notice that ink-,

this definition, deg Pk may not be bounded. For example, let

Pk (S=k_ i. This observation brings us to a crossroads in the theory:

If we were to allow convergent polynomial sequences to have unbounded

degree, the same would be true for sequences of rational functions. This

would result in an undesirable situation where state-space realizations

could have unbounded dimension. Hence, we insist on bounded degree based

both on physical intuition and on a desire for mathematical elegance.

2) Definition 2.1 is equivalent to the following two conditions:

a) {deg Pklk=1. 2 ....} is bounded.

b) lim Pk (S)-P(s) for every s e C.

Indeed. necessity of a) and b) is obvious. On the other hand. if (Pk)

satisfies a), Pk(s) and P(s) can be written as in Definition 2.1. Choose



q-1 distinct complex numbers Is 1 sqV, Then. from b).

Vtk---Vt

where

s '.Sl I a qk aq

S **5

V ~2 ~ 2
k l k a 1

q I .a~q-l"' q-l - la~k.

We know that the Vandermonde matrix V satisfies det V0 as long as
-1

s f j i*j: therefore V exists, and tk--#C as k- o.

3) We can define a topology on R(s] which is consistent with our notion of

convergence in Definition 2.1. To do so. identify every element in R(s]

with an element in eR according to
m

P m S .. P 1 s  - P O 0 - 4- (P o 'P l ' ' ' 'p m '0 .0 .0 ' "  ") ,

and let

9t +1 =  ((Po'Pl *''"P m ' O . ' ' ' ' ) e 0' I  Pi e R;  = , . . ., .

Then

A= U 9zk
k=1

is the set of all polynomials. On we take identification topology
t-

(e.g., see [19,p.120]) with respect to the bijections fk:R'-k defined

by

fk(a Va2...'a) = (a Ia .. a 20 ...k

That is, a set

U = ((a1 . . ..,ak O... )  (a .... ak )eV}

is open in 9k if and only if V is open in k On T we impose the

inductive limit topology [19.p.4201 with respect to the % -- i.e., we

Impose on 9 the finest topology which makes the natural imbeddings Vt
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cont nuons. It is rout ine to prove that Pk --P i n the s(,ense: of

Definition 2.1 if and only if pk converges to P in AR.

4) It is shown in [6,Lemma 4.3] that, if JPk) is convergent in R[sj. tiln

there exist convergent real sequences (cik}. ( ik ), and (rk0 . witlh ik--

and limr k =O . such that

P k(s) rk.Tr(aikS-)(sOik). (3)
1 1

In particular, if the roots of Pk are bounded., then degP k = deg lim Pk

In order to define convergence in R(s), we adopt a standard quotient

space construction over Rfsix(R[sI-{O}) (e.g.. see [18], p.136) and identify

each rational function with a unique equivalence class under the relation

(a.b)=(c,d) *= ad=bc.

We use the expression a/b to denote both a rational function as well as its

corresponding equivalence class in R(sx([sJ-{O)). Note that a similar

construction may be employed in identifying rational matrices N/deRrm (s) with

equivalence classes of pairs (N.d)e[R[s] x(s]-{O}).

Adopting ordinary quotient set topology on R(s). we arrive at the

following definition.

Definition.2.2 Suppose hk:k =1.2,..., and h are in R(s). We say hkconveres

to h in R(s). if there exist nk--n and dk-- d in R(s]. with dk .dO, such that

1k/dk=h k:k% .2..... and n/d=h.

Along similar lines, we now give three alternotive definitions fur

rmconvergence in R(s)

Definition 2.3 Suppose Hk;k =1.2..... and H are rxm rational matrices with

components hijk and hij, respectively. We say H.k converges to H in R(s)rm if

h ijk-h j in R(s) as k--.

7



Definition- 2 3' Suppose H :k =1.2, .. and H are rxm rational matrices. We

say H, converges to H in R(s) rm if there exist N -N in IRfsI rm and d k--d in

R[s) such that Nk /d k=H k =1.2 ..... and NI'd=H, (Here we assume product

topology on R[sI rm and that the quotient space constructions above are applied

cumponentwise on IR[s rmX(R[sJ-fO}).)

Definition 2.3'' We say H converges to H in (R(s) rm if there exist N -4N in
k

,,sJ rm  and 0 k---#D in R~s] M 2  with Ok and D nonsingular such that

-1= -1
N Dl=H:k-1.42 .... and ND -H.

Remarks

1) It is easy to show that Definitions 2.3. 2.3' and 2.3'' are equivalent.

A fourth alternative definition is the same as 2.3' ' except using left

instead of right factorizations.

2) Note that a sequence which converges in -the sense of Definition 2.3 also

converges in identification topology with respect to the map

M:Rn(2nm~r)-A(s)rm defined by

M(E.A,B.C) = Cadj(sE --A)B
det(sE -A)-n(anm.,r) r

where (EA,B.C)eR The construction of the topology on R(s) m

shows that It is continuous.

3) If Hk--,H and Gk-4G, then Hk+Gk--4H+G and HkGk--HG: more gencrally, IR(s)rm

is a topological ring with respect to identification topology on R(s) and

rm
the corresponding product topology on R(s) r

. In particular. relative

topology on the subgroup of polynomial matrices R.s] rm is the same as

product topology with respect to Definition 2.1. Note that IRfs] rm is

closed in R(s) rm

We will show in Section 5 that our definition of convergence is the

right" definition for the realization problem, since a sequence in R(s)rm

converges in our sense if and only if* it admits a convergent sequence of

8



state-space realizations. One vlfw of the results of this paper is that they

characterize local properties of the map It.

3. Time-scale Decoposition of Transfer Matrix Sequences

Clearly. any rational matrix H can be uniqutely expressed as H=l(s-H f ,

where Hs is strictly proper and Hf is a polynomial matrix. We now generalize

the decomposition to the septienLiatl case: this must be carried out in a way

that preserves convergence.

De finit iont!. 3.1 1) We say a convergent sequence (Hk) in R(s) r m is a

_sow sequence. if Hk is strictly proper for every k and there exists a bounded

region AcE such that all poles of each H k lie in A.

2) A convergent sequence (Hk) is called a fast sequence if for every

,4<- there exists a K<- such that k>K implies that each pole p of Hk satisfies

p >M (all poles tend to infinity).

Remarks

I) The set of all slow sequences in R(s) rm forms a proper subspace of the

rm
reil vector space of all convergent sequences in fR(s) . The same

statement holds for fast sequences.

2) Any slow sequence can be expressed as Hsk - Nk /d k where dk is convergent

and monic for every k and deg Nk<deg dk , where degN=max(deg n ij for any
i,j

polynomial matrix N. Thus deg limN k<deg lim dk. This shows that the

limit of every slow sequence is strictly proper.

3) Since the limit of any fast sequence can have no finite poles, such a

limit must be a polynomial matrix.

4) Every convergent sequence of polynomial matrices is a fast sequence.

9



3) If a sequence is both slow and fast, it must be strictly and have 1o

poles whatsoever for large k: hence, the sequence must be idhet.ically

zero for large k.

6) A sequence of matrices (Hk) is slow (fast) if and only if each component

sequence (h ij k ) is slow (fast).

Definition 3.2 1H) We say HJHsk-Hfk is a time-s-aie. of JHk )

when (Hk I and Afk) are slow and fast sequences, respectively.

2) In a time-scale decomposition, HsA and (}Hfk) are called the (How

pjgt and the fastLart of (Hk).

Note that, from remarks 2) and 3) above, if It--HskH fk is a time-scale

decomposition of (Hk). then Hsk-H s and Hf k'H f , where Hs and Hf are the

strictly proper part and the polynomial part of H=im H Theorem 3.3 tells

us that every convergent sequence (HkI has an essentially unique time-scale

decomposition.

.Theoem_3.3 1) For every convergent sequence (Hk) in R(s) r m . there exist a

slow sequence (Hsk) and a fast sequence (Hfk) such that Hk =H sk-H for every

k.

2) If (H sk) and {Hfk) are slow and fast sequences. respectively, and

H JHsk-HfA for every k, then H sk=H and Hfk=H fk for sufficiently iarge k.

Proof I) We need only treat the case r=m=l: the multivaiabte case can then

be handled componentwise. Tf h .heI(s). we can find nk--on and d k-.d., with

nk/d k=h k and n/d=h, Since d --d, from (3) we can write dk Akddfk, where

dsk(s) = sp  b S-l Ab

dfk(s) = aukS '-.k s  
- - a ks -s

with each (bikI convergent, yk--rO. and a ik-0 as k--,-. Let

nk(s) = Z .pk s ... . ZlkS * z Ok

10



arnd lt ;I -lMHNi.p)-u We will show that there exist convergent polynomial

sequences

nisk = x .l1k P " k X k

sq-t
i k- Yq-l.k "" Yk S YOk

such that n k (Ik- sk dskn fk d fk. Equivalenrly. we need to show that

k(nskd fk nfkdsk) nk' (4)

Note that equation (4) may be written in matrix form

Ak 'n ][;:] = zk. (3)

L2k :2k j Nk

where

1 'b
1kk

Allk- = "' kalk

L4 2k ] 'Xk . L2kj  kb .1, . .

kk 1

0 ' 0

xOk YOk 1 7 k

Xk = 'Yk ' Zk

X y zpk

with Ak, A2k. Jlk' 92k' and Yk having dimensions lixg, qxj. /jxq, qxq, and

(p+q)xl, respectively. Also note that Alk--r[., J2 k--4r[ -MI . where M is

nilpotent and upper triangular, and A2k -O as k- . Hence, there exists a K<-

such that (5) has a unique solution when k>K. For k-<K. let hsk be any

strictly proper rational function and let h fk =hk -h sk'

2) We have H sH fk Hsk#H fk for sufficiently large k. Hence,

H sk-H sk=H fk-Hfk .  (6)

But the left side of (6) is slow, and the right side is fast. Hence. both

sides are identically zero for large k.
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No conclI tide Vh is sect ion. we no te that a time scale decompos it ion otf any

transfer matrix sequence of the form H k=C'k (sE k-A k ) . there (Ek, \ k'8 C k)I

is convergent in R n(2n-m-') and det(s-lim Ek I im Ak )1O. can Itw achieved by

invoking the perturbational form of the classical Weierstrass decompulsit Lonl

for matrix pencils as developed in (7]. Indeed, from (7.p.1471. the re ,xist

convergent nonsingular matrix sequences (Mk} and (Nk}k, with lim.Mk and Iim Nk

nonsingular. such that

= • sk

where Ilim A is nilpotent. Let
fk

Bsk] = kBk' [csk Cfk C k'k (8)

Bfk1

Then

Hk(S) = Csk(sI-Ask) Bsk - fk (sAfk-I)- Bfk. (9)

From Definition 3.1 it is clear" that
-l

Hsk (S) C ski(S-A sk Bsk (10)

and
-1

Hfk(S) C fk (SAfk- Bfk (11)

are slow and fast sequences, respectively. Hence. (9) is a time-scale

decomposition of (H k).

4. The Chracteristic Polynomial.Sequence

In this section we investigate several useful properties of the sequence

of characteristic polynomials corresponding to a convergent sequence (ifkI in

(s)rm We first extend the conventional definition of the characteristic

polynomial to improper transfer matrices. Recall that the characteristic

polynomial A of a strictly proper rational matrix H is defined as the least5

common monic denominator of all minors of H
S

12



Definition I 1 1t' It is a rational mdt ri with H.-Ilsi f f for- some srrit ly

proper Hs and polynomial matrix H ,. the characte.r isticr 2o__ynomial A of H is

defined as the characteristic polynomial of H

Consi der t.he seqiienco of characteristic polynomialIs (A k Icot'respoid i ng to

IH S f N L, it follows that ,% divides d minirm} for each k: thus.
K k k k' k k

boundedness of (deg dk) ensures boundedness of (deg Ak}. Let r/lim(deg Ak

,ind note that deg Ak:Sk fov suff;iciently large k. For all such k. Ak carl titus

be .,lquely identified with a point <A k> in the real projective space (pt7 (see.

e.g.. F201) according to

i .l i-i O 77+
s -a i 1  - ... - a 0 F- (0 ... R0.1..1 . ...

In fact. there is a one-to-one correspondence between P7 and the set of monic

polynomials A with degA-<-1. These observations lead to the following

definition.

Definition 4.2 Let (Hk } be any convergent sequence in IR(s) m , and let Ak be

Lhe characteristic polynomial of Hk. Set

r<A k > . deg, .1k -SY/

Pk <>. de Ak >

The sequence (pk is called the characteristic. polynomiial (CP) of (HkI.

It is easy to show that (pk converges if and only if there exists a real

sequence (rk  such that {kAk} converges to a non-zero limit AeIR[s ., In this

case. I im pk=<A>. We now present several pathological situations that can

arise in dealing with the CP.

Example 4.3

1) The following example Illustrates that when (11 k is convergent, the

corresponding CP may not converge. Consider the sequence

13



k even

H k ( ) k)

( s-3_) k odd

Lst- I) (s 3 -1)

and lot H(s)= We may write , where '11s ))(s-3) .-nd
s.I Hk: Lk dk'

dk = 
k evn

k odd

Thus H k---H, but

kk

s-. )(s"3i ) k odd

Clearly, 1pk} is not convergent. Note, however, that iHk } can be divided

into two subsequences wiLh convergent CP's according to H --nH and
k 2k-"

ifk 21I,<)k

2) In some cases, (p k may converge even though {Ak } does not. Consider the

rational sequence

Hk(s) 1

In this case, (Hk} has CP determined by Ak(s)=(sk)(s* 2 ), but !k)

converges,, since

1 1
Ak (S) = R(s k)(s-2) s-2.

3) Finally, we note that convergence of { k ) (or even (Ak H does not

guarantee that lim Ak Is the characteristic polynomial of lim Hk' For

example, let

H (S) s,2
(s-1)(s-2 1)

Then

Ak(s) - (s+1)(s+-2,- ) -. (s-1)(s-2),

14



But

H k(S) -

Next we examine some basic properties of the C? with respect. to thle

time-scale decomposition. First we iieed a simple result for individual

systems.

Lemma 4. 4 Suppose H=H -H. where H and It have no common poles, and let 1.
1 21 2

A ~,and A 2 be the characteristic polynomials of It. HI' and H 2'respectively

Then A=A I A 2 *

Proof From the definition of the CP we can assume without loss of generality

that H 1 and H 2 are strictly propor. Suppose (AI'1 , C~ C1) and (A 2 ' 12 0C 2) are

minimal realizations of H Iand 1H 2: then A .(s)=det(s[-A.) If we let

A K=] B = [1B' C =[C1  2]

then (AB.C) is a minimal r-ealiZation of' H with CP

Al(s) = det(sI-A )det -.-

1 (s- 2)

In particular, for any time-scale decomposition. Lemma 4.4 implies that.

when k is sufficiently large, we have

A k AA A f'(12)

where A k' A s and A fkare the characteristic polynomials of H k' Hsk . and H fk'

respectively.

Lemma 4.5 Let H k=H skH fkbe a time-scale decomposition.

1) If A sk is the characteristic polynomial of H sk and AeR(s] is monrtie

then <A sk >-<A> if and only if A sk--'4A

2) If (P fk ) is the CP of H fk' then k-'<>

3) The CP of (Hk ) is convergentt if and only if the CP of (H sk } is

convergent. When the two CP's converge, their limits coincide.
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Proof 1) Slft'irin(y iS obviuus. To show necessity. observe that there must

exist a real sequence (r k ) such that r kA k--A and that fA sk has bounded

roots. From (3), (rk} converges. Since A and A are manic. TkI
k skk=

2) We have ) where
fk fk

SIs ik). H fk is not a polynomial matrix.

Afk

1, Hfk is a polynomial matrix.

Here the A.. satisfy the property that. for every M<- , there exists a K<- such'K

that -2 ik >M for each i and each k>K. [,et{I. Hfk is not a polynomial matrix.
rk i ik

1, H fk is a polynomial matrix.,

Then rkALfk--+I in Rfs].

3) The result follows immediately from (12) and part 2).

The final result of this section focuses on the observation made in

Example 4.3. part 1). that the CP of a sequence (Hk) in Rrm(s) which is not

convergent can sometimes be decomposed into convergent subsequences. We can

in fact demonstrate that a finite decomposition of this sort can alwavs be

achieved.

Theorem 4.6 If H --4H, then {pk ) has finitely many limit points.
kk

Proof From Lemma 4.5, part 3), we need only consider the case where ilk is a

slow sequence. Let H =N d and H=N/d. From the definition of the
min~r.m} for each k. But

characteristic polynomial. Ak divides dk
dmin~r,m} ,min(r,m)
dk id so the unique monic representative of each limit point

of (pk must divide dmin{r m}. The result then follows from the fact that any

polynomial over R has finitely many manic divisors..
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Corollary 4 7 it H k--H. then there exist t'i it , ly many strictly increasing

ik

sequences {kj}:i1. ato positive Integers such that.

1) jk (i=12..... r;j=l,2 .. 4 {l.2.3 .... k

2) (k~Ij=l .2... f n (kqjj=I.2 .... } p when p~q.

3) each {k has convergent CP.

J

Proof From Theorem 4.6. there are only finitely many limit points

1 ..... pP7 of (Pk } . Since P )? is a compact Hausdorff space, each open subset

U of P") satisfying (p1.....p I .kI,, contains a tail of f.Ok). Indeed, otherwise

there would exist a subsequence of (pk  wit.h no limit point, contradicting

compactness of P. Let - U be nonintersecting neighborhoods of

1 ,tP.... p . respectively: then there exists a K<= such that {pk}CUUi for k>K.

Let k.1=j: j=l. ,K. The remaining k may then be defined iteratively

according to k'=min({kIPkeUi }- {k i lq <j ) '. If V i:Ui is another neighborhood ofj q.

p., then by compactness of (Pr there must be a tail of the subsequence (p k
i-

contained in V.: hence, p -p
k

5. Existence of Realizations

We are now ready to formally define realizations of a given transfer

matrix sequence Hk and discuss their existence. We base our definition of a

realization of {Hk} on the standard definition of a realization of a single

rational matrix H as in Theorem 1.2.,
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Detin ition l 1) Suppose (Hk converges in ir(s) r m .  We say a setence 'u k

is a realization of Hk). if there exists an i1teer K and a

such that ak  is a realization of H k when k>K and (;k-- in

Rn( 211-m r )

2) A realization in {Rn(nm-r) is said to have dimension it.

Note that the dimension of a realization (ak} is given simply by dimork

for any k. [ H k--H. then continuity of R implies that a is a realization of

H in the conventional sense. ve will show that there exists a realization for

any convergent sequence (Hk): this generalizes part 1) of Theorem 1.2 to

sequences and demonstrates that the definition of convergence in I(s)I m

outlined in Sect.ion 2 is *he correct one for our purposes.

To simplify subsequent discussion., we will make use of the mappLng

'A:R(s) rm-_R(s) r defined by

",(H) (s) -- - (s '

s S

It is easy to see that 1 is an isomorphism on R(s) rm and that 1- 1=,1. Some

elementary properties of I follow.

Lemma 5.2 Let HEIR(s) rm and let (Hk } be convergent in R(s)rm

1) (E,A.BC) is a realization of H if and only if (A.E.B,C) is a realization

of ,(H).

2) p.(H)=Pp(I(H))

n_ n-I
3) If the characteristic polynomial of H is A(s)=s-7n1 s  + - '70' then

the characteristic polynomial of I(H) is r(s)=T(o0S n-. *n1 s-l) for

some r*0.

P.roof 1) Suppose H(s)mC(sg-A) 1B. Then

"'f(H)(s) = -IC(-E-A)-IB = C(sA-E)-IB.
S "8
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2) From I). if H hs a r oa Iizat ion oif degree n. lhen so does s i) The

converse follows from 11(1(H) =H.

3) Let (E.A,8,C) be it minimal reaitzatiui uf H; then (A. '.C) is it

minimal realization of' I(H) Hence. A(s)=, det(sE-A) for some rI J-O for
I

details, see 114]), and

7(s) 2 rdet(sA.-E)

-2 (s)ndet(1h A)

s n-1 s 0

n2 n- ( .1) *-. L . -7? 5( n

I O  " ' n-1

Lemma 5.3. If (Hk} is a fast sequence, then 1'Mik is a slow sequence.

Proof Since all poles of Hk tend to infinity, we can write
kkS

Hk(s) k
k p

.[( ikS I)

where (Nkl is convergent and each a ik -0 as k--. Let qzmax{deg n jk.P-l1.,
k

Then

'l(Hk)(s) = -1) p'  S k (s-

sqPnr(s-a1k

Note that SINk(1) is a polynomial matrix, each of whose elements has degree at

most q. Clearly, '1(11 ) has bounded poles, and the denominator of I(Hk) has

degree q+1, so 4(Hk) is strictly proper.

Now consider a time-scale decomposition H k=HskHfk of an arbitrary {Hk I

in R(s) rm Suppose H sk) and {I(Hfk)} have realizations of the form

(l,A skHskC sk 0 and {(l.AfkBfk Cfk)}. Then each Hfk= (1 Hfk)) has

(AfkI.BfkCfk) as one of its realizations. Defining
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[E Af, Ak [ . Bk [: . Ck sk
k 0 A fk 0L 8fkJ

it is easy to check that HE kAk' Bk C k) is a realization of (Hk}. ThereCore.

we only need to prove existence of realizations for slow sequences.

Theorem 5.41 Every slow sequence has a realization of the form ((I.A . .(

Proof First we treat the case rnm=l. Let H =N d where (N and ld 'e
k k k'hr (k~ n "k~

convergent in fRfsl Then

k  X a Ik Ok

"Nk =q-l.ks  4q-2.k . .Ok'

where aik and ik converge as k-. To obtain a realization of (Hk} of the

desired form, set

0 1*

Ak= . ,k . Ck = [90k A1k

[-ak .-cl....... aq~
Ok 1k q-l.k I1

Now we consider the general case. By the definition of convergence in

fR(s) r evey component sequence {hijk} is convergent. Suppose

kI. Bj ) ) is a realization of (hijk Let
A k k k C

A = d ag(A j --=l.2.r. ,m). B k idaag(Bki  jC1,2...,m . Ci - - Ci l. . i m

A simple calculation verifies that U([.AkBkCk) saraiaino H

kk k' k is a = rel kto of k

Combining the Lime-scale decomposition with L.emma 5.3 and Theor'em 5.4. we

arrive at the following result.

Corollar~y5.5 Every convergent sequence in fR(s) rm has r, realization.
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Theorem 5.4 (but not Corollary 5.5) may also be proven in an abstra,

algebraic framework as outlined In l17.Chapter 4]. Briefly, consider the

commutative ring c of convergent sequences in IR using pointwise operations.

and let the set of rxm proper rational real matrices be denoted by R p(s)" . A

convergent sequence {HkI in R p(s) r m may then be viewed as a formal powerpoe

series over the ring of rxm matrices with elements in c. Indeed, we may

expand each element of each H k about s=-. yielding the series

Ii

k  () i (13)
1=I

where the sequences {H ik are convergent, From this point there are two ways

to proceed. First, one can prove realizability by constructing a certain

infinite-dimensional Hankel matrix from the H ik. It must then be shown that

the span of the columns of the Hankel matrix is a finitely generated module

over c. A second approach is to show that the formal power series (13) is

"rational" in a certain algebraic sense. This immediately guarantees

realizability. Both conditions can be demonstrated in our framework fairly

easily; however, our proof of Theorem 5.4 is more direct and is sufficient for

our purposes.

6. M inimal it-"
rm

In Section 5 we showed that every convergent sequence (Hk } in R(s) mhas

a convergent realization (ak}. In this section, we explore the issue of

minimality of a realization.

Definition 6.1 1) If n is the smallest integer such that (Hk) has a

realization of dimension n. and (ak) is a realization of {H k} with dimcr = n.

then we say {crk ) is a minimal realization of (H
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2) If a sequence of stat,-space systems Jak  is a minimai relitzat.Jon of*

its transfer matrix sequence, we say (ak) is m.i.n.imal.

Obviously, all minimal realizations of (Hk} have the same dimension.

This fact enables us to define a d,;ree function 6 on the set of convwrgont

rational mdtrix sequences by setting 8 1 k) equal to the dimension of aYi

minimai realization of 0k. In this section we develop a simple expression

for 8 fHkI for slow sequences and then extend it to the general case. Next. we

examine a natural conjecture for determining whether a sequence {(;kk is

minimal and relate minimal realizations of the same (Hk) in a manner analogous

to Theorem 1.2, part 4). F'inally. we relate our results to the realization

theory outlined in (171 for algebraic systems over the ring c.

In our developmnt it will be helpful to exploit various properties of

the mapping which takes each state-space system into a particular choice of

numerator and denominator of its transfer function. Specifically, define

r n:Rn(nm+r)--A n(rm+1)-1 according ton

[' (A.B.C) = (C-adj(sf-A)8,det(sI-A)).

Here we have identified *k' as defined in Remark 3) after Definition 2.1. with

Rk. Note that 1' is continuous; if r n(A,B,C)=(N,d), then (I,A,B,C) is a

realization of N/d., Also notice the distinction between I'n and f. as defined

in Section 2. We denote Im r =1' (Rn(n+mr).

The following series of lemmas leads us to the first main theorem of this

section.

Lemma 6.2 Consider any pair (N.d) where d is monic, degd=n, and N/d is

strictly proper with characteristic polynomial A. Then (N,d)elm' if andn

only if A divides d.
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Proof (Suftficient) Suppose

p
d(s) A(s) Ir (s-,lO )I

i=l

and let (I.A.B.C) be a minimal realization of N/d. Define

A f j, B = ,2. (c 01.

where

Th[ .

Then

, p
det(sI-A ) det(sI-A)det(sI--L) A(s) It ($,,) d(s).

1=1

Since C (sI-A)- I B *=C(s-A) IB=N(s)d(s),

* * * *(s)
C adj(sI-A )B det(sI-A d) = N(s).

Hence, (N.d)=[' (A ,B .C ).n

(Necessary) Suppose (Nd)=r (A.B,C): then (IAB,C) is a realization of

N/d. From [16,Theorem 5-181, we can find a similarity transformation T such

that

T'AT K A22 A 23, T 1 8 = , CT = [0 C2 C 31

0 2 A 33- 3'

where (A2 2 B2 ,C2) is a minimal realization of N/d. Note that

det(sI-A 2 2 )=A(s). Thus

d(s) = det(sI-A) = det(sI-A 11 )det(sl-A3 3)A(s).

From Corollary 4.7, (H k  can be decomposed into n sequences

{H(i);i=1.2... . , where we define H ) " Each sequence has convergent CP
k k

satisfying

<Ak M)> -- * < A M)>: i12...

k
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where L is monic. if PHk  i slow, then. from Lemma 4.3. parr 1),

S-)__A . Let
k

A -: LCM A (1) .. A(k)

where [.CM denotes the Ieast conmoi multiple. Also dlf Ine

M t{i) \
Ak Ak -- : i-1.2.. . (14)Ct)

Note that each Ak is a polynon ial and -that. if (H1 } is slow. Ak -

Lemma 6.3 Let 1Hk ,i be a slow sequence with Hk--H. and suppose H has

characteristic polynomial A. Then A divides A.

Proof According to Corollary 4.7. (H can be decomposed into n subsequences

(i), ( i) (i)
with convergent CP's A k -A If I divides L for each i, then A divides

A. Hence. it suffices to treat I.he case where {Hk} has convergent CP Ak-A.
k k

- p
Let p-mln{r.m). and consider !he sequence (Hk) of ix P ()( ) rational

1=1

matrices, each Hk consistjng of tile minors of Hk of all orders. Obviously,

H -H. where H is defined similarly. it follows from elementary arguments
k

that Hk has characteristic polynomial Ak (same as Hk ) and that. for any

polynomial q, qHk is a polynomial matrix if and only if Ak divides q. In

particular, AkH k is a polynomial matrix. Since RfsJ is closed in R(s) for

any j, AH is a polynomial matrix. Thus. the characteristic polynomial A of H

(and H) divides A.

Lemma 6.4 P is an open mapping.n

Proof Note that r Is multilinear: thus, it is a composition of functions on

Euclidean spaces RP of the form f(x1 . .. )x x~I and g(x, ... x p )- .X -xp

Since f and g are open, compositions of open maps are open, and products of

opens sets are open. it follows that ' is open.n
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Lemma 6.5 Let X and Y be topological spacfes with X first countable. dnd let

Q:X--*Y be an onto, open, and continuous map. For any convergent seqttnu.e tyn

ini Y with ykY--yeY and any x*Q (y). there exist XkEQ (yk):k;l 2 .... suc:hI thtt

Proof Let (1: i .2, " be a countable basis of neighborhoods of x with

U i Since Q is open, each Vi=Q(I"i) is a neighborhood of y. Hence, for

ally V. we can find an integer Ki such that ykeVi when k>K . Furtherrmori',

there must exist points xk )et k-:K '1.K 2,... with Q(x, = Fov 
ki -i I ik )

sklect any x M)e Q -(y). This process defines sequences (xk )1:i1,2 ....
n nk

Without loss of generality, we may assume K > K. If we let

x=x l) 1k=K 1 ,-1 KI , where KoOV, the construction shows that each U1

contains a tail of the sequence (Xk Hence. Xk --*X.

Lemma 6.6 Suppose {Hk ) is a slow sequence with Hk--*H. If there are pairs
Nk'dk).(N,d)eimr n such that Nk/dk=Hk ' N/d=H. and (Nk'dk)--#(N.d), then (Hk)

has an n-dimensional realization.

Proof Note that Rn(n~m~r) is first countable. Thus, if we restrict the range

or I'n to Im'n . we may use Lemmas 6.4 and 6.5 and the fact that rn is

continuous to conclude that there exists a convergent sequence

(Ak' Bk. Ck )---,(A, BC) In Rn (n~m+r) such that I'n (Ak' Bk' Ck)=(Nk, dk ) itnd

r (A.BC)-(Nd). Notice that (I.AkBk'Ck) is i realization of

IN /d = H ;k=1 2,..., and (I,A,B,C) is a realization of N/d=H.
kkk

Lemma 6.7 If a slow sequence (Hk} has an n-dimensional realization, then it

has ..n n-dimensional realization of the form ((I,AkBkCk)}

Proof Suppose {Hk} has a realization having dimension n. Since (Hk) is slow,

the decomposition (7)-(11) shows that (Hk is of the form

Hk(s) = C sk(SI-A sk) a sk
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0t V

where As is q(Iq with q~n. Define

Ak = k . Bk 0 k Ck ['sk

Theorem 6.8 For any slow sequence (H

fH k . (e, A.

Proof Let n0 =leg A. We first show that there exists an no-dimensiunial

realiz.ation of 0k Let and N=AH: then and N are

polynomial matrices with (N k)' -. , Since all poles of Hk are
"( l)de -~o Tu

bounded, Remark 4) after Definition 2.1 shows that degAk =deg A-n0. Thus,

from (14) and Lemmas 6.2 and 6.3. (1 k k ).(NA)elmrn o  Suppose {(NkAk)}
(i) M .I) where the

is constructed by setting N = and A whenever H =H hr
kJ J 3

k are defined by the decomposition of Corollary 4.7. Then (Nk'Ak)eim r no

The desired result follows from Lemma 6.6..

It remains to show that no is the minimal dimension over all realizations

of (Hk}. Suppose (Hk} has an n-dimensional realization. Then, from

Lemma 6.7, it has an n-dimensional realization of the form ((I,AkBkCk)).

Let (Nk'dk)=rn(AkBk'Ck) and (Nd)=rn (lim(A kBk, k ) ). from Lemma 6.2, A k

divides dk for every k., Letting d i)=d A, Ai) divides d~i) Since I' Is
kk.I kn

j

continuous, d(1)--+d; thus, closure of R(s]clR(s) guarantees that each A( i )

k

divides d. Thus A divides d. and

n a deg d ?- deg A = no.

The following result offers one method of calculating 6 {H } for an

arbitrary convergent sequence {Hk} in (s)r, .

Theorem 6.9 If H =H k-H is a time-scale decomposition, then

5{Hk} 8(Hsk + 8(Hfk).
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Proof Sutppose {(Ek.AkBk.Ck)} is a minimal realization of (H k. Appealing to

(7)-(11). it suffices Lo show that (a ):{([.Ask. BskCsk) and

acfk}=((Afk. fkCfkc)} are minimal realizations of (H sk and {HfI( SlIppose

there exists a realization (Ask )((Esk.A Bsk C sk } of (iH sk w ith

dima 'dima By Lemma 6.7. we may assume that EskI. Let[k AJ Ak [Ak
E k " k =  6 k ski- Ek [Csk Cfk"

0 Ak L0  1Bfk

Then (akl={(Ek.Ak. Bk.Ck) } is a rea]ization of (Hk ) with dimak<dim a . Thi s

is a contradiction. A similar argument shows minimality of {fk ) .

Thus, one way to find 8 Hk} is to first perform a time-scale

decomposition Hk =H sk*Hfk and then to use Theorem 6.8 to find 6{H sk and

6(H fk=(.I(H fk)), Fortunately, the next theorem simplifies this task and

shows how to calculate 6(Hk ) without resorting to time-scale decomposition.

Recall that, for any HeR(s), Hf denotes the polynomial part of H.

Trheorem 6. 10 Suppose H -4H. Then

85(H k }  max li-m (de, A(i k /W(H k ))f]
i k

Proof Suppose H k=H sk-Hfk is a time-scale decomposition of (Hk), and let

M~i  _ , Mi~)- .

s i f i

[t is cr1ar that H~ M. H ( i ) *H (  is also a time-scale decomposition and that
k sic fic

Hsk and H fk  have characteristic polynomials A sk and A(i). respectively.

From (12),

Ai) A(i)A(i) (15)
i isk fk'

From (15) and Lemma 4.5. part 2), A 1 -4A Hence, from Theorem 6.8,

801 sk)=deg A. Also, since each Ask is convergent and moiiic.

deg a i)=deg A for large k.
si2
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4 t

From (3). <A f  is of the form
P

<A > < ( s 1 p . . ->
fk = l ik pk Pk

where s ik-0 as k-. Note that some of the z. may v~xnish: so, from

Lemma 5.2. part 3). 1(lt.k) has characteristic polynomial of the form

fkkrk S A q . q - I
k (S 1' k s  I.' ''" qk'

where q may depend on k. Therefore, the limit of any convergent subsequence

of (r } is of the I.orm s q  Suppose r is the least common multiple of these

limits: then r=s. where

q = lim deg(r k ) = lim {ij,(Hfk)J = lim /(Hfk).

k k k

The last equality is ubtained from Lemma 5.2. part 2). Arguing as In

Lemma 5.2, part 2), 6(1(Hk))=6(Hk for any (Hk . Hence, from Theorem 6.8, we

have

5 f (fk 6 1'4(Hfk)= deg r = q,.

Theorem 1.2, part 2) and Theorem 6.8 show that M(Hfk)=deg, Afk+t((Hk)f), From

Theorem 6.9,

jH k } = deg A - lim (deg afk + /M((Hk)f))

= lim (deg A + deg Afk - ((Hk)f)f
k

= max lim (deg A deg A(1 )  (k i f-fk k (  f)
i k

It remains to prove
deg A = deg A deg A(i)

k fk (16)

By the definition of (i)

deg A k deg A + deg A de AU) (17)

Since deg A( skJ=deg A , it follows from (15) that

deg A(1) = deg A(i ) t deg A ( i . (18)
k fk

Combining (17) and (18). we obtain (16).
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Caro,.t) _r ~i11 Suppose Hk---H. If the CP of (Hk ) is convergent. then

5 (Hk} = urn(H)
k

Pr'oof In this case, x1 lfltd L-As

(Hk  lin (deg Ak  /((Hk)f))

kk k
6(H k lint (e Ak+(H

lint41 k )s .PUHkOf):Lim 1(H k)
k

Our next goal is to generalize part 3) of Theorem 1.2. An obvious

conjecture is that a realization fak) of {Hk) is minimal if and only if each

7k is controllable and observable (as defined In (81). While controllability

and observability for every k (or, indeed, for infinitely many k) are clearly

sufficient for minimality. the next examples demonstrate how necessity can

fail.

Exanp.le 6.12 1) Even for a slow (H k). minimality of (ak } does not imply

controllabilitV and observability even at a single point. Consider the

sequence (HkI in Example 4.3, part 1)., We can decompose (Hk} into two

subsequences

) s+2 1

H (2) s+3
(s+1) (s1) --34)

(1) (2)For H(k and H the CP's are

(1) = (s4)(s*2+-- 1 .) -- (s+l)(s.2) = A(1)

A (2) = (s-1)(s+3+- ) --, (s+-1) (s-3) A(2 )

Thus

A(s) = [JCM {A(1)A(2)} = (s+1)(s 2)(s,3).

Since (Hk} is a slow sequence, Theorem 6.9 indicates that 6{Hk}=deg A=3.
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Every minimal realization {U7k } of 1Hk } must have dimension 3. but M(ak)=2 for

each k: hence, no ak is controllable and observable.

2) In this example, the CP converges, but controllability and

observabIlity on a subsequence is the most that can be achieved. Let

k even
l(s)

1 2,)2 k odd

kkA simple calculation yields d(1 k})=2, but /M(H k)=I whe:n k is ev\en, ,so any

realization must contain infinitely many terms which are not controllable and

observable.

The next result offers a weak extension of Theorem 1.2. part 3) to the

sequential case.

Theorem 6.13 Consider a convergent sequence (ak)=(F.k.Ak' Bk. Ck and let

H k=C k(SE k-Ak) 0 1B . If the CP of (H k} converges and (a k} is minimal, then

there exists a subsequence ((ck.} such that a is controllable and observable
1 3

for every J. if. in addition, {Hkj is a slow sequence, then lima k is

controllable and observable, so ak is controllable and observable for every

sufficiently large k.

Proof From Corollary 6.11, there exists a subsequence {Hk } of {Hk) such that

6{H k)=/(Hk ) for all J. Therefore, each ak has dimension /j(Hk ) and must be

controllable and observable. If (H k ) is a slow sequence and the CP converges,

Lemma 4.5, part 1) shows that Ak - , where A is the characteristic polynomial

of H=lIm H . Since each Ak is monic, for large k we have

(H k )=deg Ak =degA=u(H). From Corollary 6.11, dim a=6{1k}=(Hk); hence, a is

controllable and observable.

Restricting attention to slow sequences, Example 6.12, part I) has

special significance from an abstract algebraic perspective. It is easy to
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show that algebraic controllability and observability over the ring C

convergent real sequences. as defined in (17,Chapter 21. is equivalent to

controllability and observability of ak for sufficiently large k. Thus.

linear systems over c do not satisfy the property that minimality implies

algebraic controllability and observability.

We conclude this section by examining the problem of extending

Theorem 1.2. part 4) to the sequential case. The following examples show

that, in our case. two minimal realizations of the same sequence (ifk may not

be related by nonsingular transformations (cf. [17,Theorem 4.191).

Example 6.14 1) In fact. two minimal realizations may not be related by

nonsingular transformation for any value of k. To see this, let (Hk} again be

the slow sequence given in Example 4.3, part 1). In Example 6.12. part 1). we

showed that {Hk}= 3 . Consider the two minimal realizations ((IAkBkC1k))

and ((I,A2k. BkC2k)), where

0 0 1 k even

A 
6+)

lk

0 0 1 k oddL(6-1) --11+)-(,'6 ],ken

A2 0 01

BR ~k [6+1 5+1 1 , k even
B k 0O' Clk 0 6 5 3] 1 k

LU6+ 5+- 11. k odd*

Suppose there exist convergent nonsingular matrix sequences (Mk} and {N such

that
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MkNk 1, 'M lkNl A2k

?kBlk 82k C1kNk C 2k

for each k. Then Nk=M1 and A 'MkA kM_ . But a simple -calcalation shows

that Ark and A2k have different spectra, yielding a contradiction for each

value of k.,

2) When the CP converges, Theorem 6.13 implies that there exists a

subsequence on which every minimal realization is controllable and observable.

Hence, Theorem 1.2. part 4) guarantees that for any two minimal realizatious

there exist nonsingular sequences {Hk) and {Nk} which relate the various

matrices. However. it may not be possible to find {Mk) and (Nk) which

converge. Consider the sequence given by

1

Hk(s) =
;s+1

S1~

with realizations ( ,-1,.,) and We have immediately Mk =1. so

Mk=k.k 
kkk

M k

However, there is still one interesting case where a result is possible.

Theorem 6.15 Suppose (Hk} is a convergent sequence in R(s) and let

((Ek, Ak ,Bi ,Cik)}: i=1,2 be two minimal realizations of (if with

(EikA.*BikCik ) controllable and observable for every ik. Fu, ter assume

that each (EI AIBiC i)=lIm(EikAikB kCik Is controllable and observable.

Then there exist nonsingular matrix sequences (Mk) and (Nk) with Mk -F1 and

N k--*N, M and N nonsingular, such that Mk E N k=E2k Mk A kN k=A2k M B kB 2k and

ClkNk=C2k for every k.

Proof Applying the decomposition (7),(8) to {(EikAikaikCik)) yields

decomposing matrices M Ik -- I and N ik --Ni and decomposed system matrices Ais k,

A ifk' isk, Bifk' Cis k  and Cif k with lim A ifk nilpotent. This determines in

two ways the same time-scale decomposition H=H sk+Hfk given by
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-~ ~ ~ ~ ~ .-. - -----

H (S) ~C .4A
sk isk(SlAisk) 8isk

Hfk(S) = Cifk(SAifk- ifk"

Note that, for sufficiently large k, each of the subsystems (1,A ,s .8 .C-

and (Alfk.I.BBfk, Clfk) must be controllable and observable. Fvom (16.p. 208..

the similarity transformation T 2 V 2" VsT V where V is tl~e
Ak 2sk 2sk 2sk 1sk' isk

observability matrix of the pair (A skCisk), takes (1,Alsk'ask, Clsk) ilto

(.A 2sk3 C 2sk,)2sk Furthermore, (Tsk) converges to the nonsingular muar.ix

TsV(V V ) V V A similar construction yields Tfk--4Tf. A
s s2s 2 ss f

straightforward calculation shows that the sequences

_1 T1h 0T10
k tk2k 0 Tfk 1 k0 T IfkJ

yield the desired result. J

Our final result follows with the aid of Theorem 6.13.

Corollary 6.16 If {Hk is a slow sequence with convergent CP and

{(EikAikBikCik)); i=1.2 are any two minimal realizations, then, for

sufficiently large k. there exist nonsingular matrix sequences {Mk and {Nk)

and nonsingular matrices M and N such that M k--M, N k--, MkE ikN kE2k

MkA IkNk=A 2kM kk=B 2k and Ck Nk=C2k for every k.

7. ConIuding.Remarks

The problem discussed in this paper is the realization of convergent

transfer matrix sequences with convergent generalized state-space sequences.

Just as state-space sequences may be decomposed according to time-scale

behavior, a time-scale decomposition for any rational matrix sequence may also

be achieved. We have shown thdt convergence of the CP of a sequence of

e'atlonal matrice3 is a crucial 4esue in the minimal realization problem. It

was proved that, when the characteristic polynomial of a rational matrix
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sequence is not convergent, the rational sequence can be decomposed into

finitely many subsequences in such a way that each subsequence has convergent

CP. Our results demonstrate that the general problem can be reduced to

finitely many subproblems, each of which can be handled using a simpier,

theory. It is hoped that our results will complement the robu,:tness

literature at large.
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Technical Notes and Correspondence

Linear Compensator Designs Based Exclusively on results will stimulate further discussion in an area which has been
Input-Output Information are Never Robust neglected by all but a handful of researchers.

with Respect it Ulninodeled Dynamics
II. PREI.IMINARtIES

J. DANIEL COBB We study systems characterized by the linear, time-invariant state
equations

Abstract-We Investigate the effects of unmodeled, higher order
dynamics or parasitics on the stability of linear control systems. We first x'=Ax+ Bu, y= Cx+ Du (I)
describe a class of perturbations of a given state equation which cannot be
distinguished from the original on the basis of input-output measure- and perturbations of (1) given by
ments alone. Then it is shown that, given any plant-compensator pair,
such perturbation of each system can always he found which destabite [ A0.: A,, ] A x ] + [B 8,1 yC'X+CA
the closed-loop configuration. Finally, the effect of destabilizing pertur- [ [1 A, 2  B ,
bations on output behavior is explored.

(2)
1. INTRODUCTION where the submatrices in (2) satisfy

The effects of high-frequency or parasitic phenomena on closed-loop
system performance have long been studied. A popular framework for A,, -A12 A A2, =A. , -A1 2 A 2-BZ=B (3)
addressing this issue has been that of singular perturbation theory (see,
e.g., 11I, 121). The point of view that parasitics are ultimately connected C.-CA'A 1 =C, -C 2A'B 1 =D (4)
with unmodeled plant dynamics has become quite popular in recent years, 22 22
sometimes with surprising consequences. For example, it was shown by and A32 is nonsingular. If we set e = 0 in (2) and liminate (1) isRohrs et al |81 and loannou and Kokotovic 131 that high-frequency ad~ii osnua.I este=0i 2 n lmnt ,()iRohr etah 81 nd Iianou nd okciovi 13 tht hih-fcquncy obtained; hence, (2) with e = 0 may be thought of as a state augmentationphenomena can lead to instability in adaptive control schemes. Adaptive obtaine e n (2) itte a bto of tat augmentation
controllers being highly nonlinear, a natural question to ask is whether of(I). Setting e > 0 in (2)constitutes a perturbation of that augmentation.
parasitics could have a similar destabilizing effect on control systenls For the moment, we allow A u to be either stable or unstable,which are based on linear compensators. This was answered in the To aid our analysis, we will use the decomposition for singularly
affirmative by Khalil in 141 and 151. A notable effort to circumvent these perturbed systems deavloped in 101 where it is shown that there exist real
difficulties in the case of linear, time-invariant systems was made by matrix-valued analytic maps a r- M, and ,-, Na , defined on some
Vidyasagar, culminating in the results of 161 and 171. and

Our work is most similar to 171, but differs primarily in that we
investigate the stability of a closed-loop system when both the plant and [1 0 1i 01 [4,, ,, ! [ , ]
compensator are perturbed. The idea of perturbing both systems has been M 0 (o 0A A A n0
largcly neglected in the literature (with the notable exception of 161), even Lt, . L A uJ [0.I.
though one can easily make a strong case for considering such (5)
perturbations. Indeed, one need only recognize that a compensator, like
the plant, is a physical system governed by a mathematical model which is with Af, and A,, analytic and Af,, nilpotent. According to [101, the
inherently subject to uncertainty. matrices M, and N, are unique up to change of bases; hence, we may takeIn light of examples such as those contained in 141 and 151, even M,, and No to be any matrices which achieve the decomposition (5) at f =
arbitrarily small model errors arc to be feared since such effects have the 0. For example, let
capability of destabilizing a system just as certainly as larger errors do. In
fact, those examples illustrate that in some case, small errors can cause M0= V
greater instability than do larger ones. 0 o  -A iA31 A-

In this paper, we intend to show that, when uncertainties in both plant
and compensator are taken into account, even strictly proper compensa- Next, define
tors are subject to parasitic destabilization. Hence, properness of the
compensator is really not the pivotal issue here as it is in 171. We will I ,C]
show that, if only input-output information concerning the plant and [ B,. ., c. C, C,]N,. (6)
compensator is available, robust compensation can never be achieved.

The results of this paper arc by nature primarily negative. We do not Equations (5) and (6) yield the decoupled state equations
claim to have a clear understanding yet of exactly what constitutes { rn F 01 Lr ,
sufficient information for robust compensation, although we do mention a 1 0 L , L, U
possible approach to finding an answer in Sction V.It is hop]d that otir A,, iI I

Y = C,,X, + Cx (7)
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We now present a series of technical results which will be useful in l1. INPUT-OUTPUT EQUIVALENCE
Sections IlII and IV.

Lemma i: A3o = A, Bo = B, Co = C, Bo = B2, C C2 A,', In this section, we explore the relationship between the nominal and
and A, = eF, for every e E [0, 1) where F0 = A -1'.  perturbed systems (I) and (2) and discuss the conditions under which they

Proof: From (5) and (6), we have are indistinguishable if only input-output information is available.
Consider the process of obtaining or veritying an input-output model of a

A,' A 1 [A 0]physical system. We are allowed to take measurements by applying an
o a A,I L , input signal starting at I = 0 and by observing the output; it is assumed

L A 20that no direct access to internal states is possible. Once a nominal model is
~r, obtained, a controllable and observable realization can be chosen,

B,0 I= [ B, = BI yielding the state equation (1). Since we have no direct control over initial
LBoj B .L states except through the input ports, and since I = 0 presumably occurs

long afler the '%ysiem wa% built. the systcii may be assumed initially ut I
IC,o C,0 =IC. C,,IN( =IC CzA 2,1. rest. Hence. we choose x(O) = 0 and ()) = 0 in (I) and (2).

We define the class of admissible input signals '1 to be all C' functions

Let u:[O, ri -- filn satisfying max Ilu(t)II < Ko, max Il1(1)11 < K,, and u(0)
0 where the constants -< co, Ka < co, and K, < oo are independent

2 . i F/' . of it. From an engineering standpoint, it is not unreasonable to place suchL. ] restrictions on u. Indeed, in any real-world scenario, there is a maximum
length of time one would be willing to invest in collecting data, as well as

and note that a maximum amplitude of voltage, force, or other input quantity that could
[ ] [I 0  [1 possibly be generated using available technology. Furthermore, there is

N; ,M, [ N,- 1. always an upper bound on the rate at which u(t) can be made to vary (e.g..
N A2 AnA0 el = Al, every amplifier has a maximum slew rate). Thus, the constantsr, K0, and

K1, although possibly very large, must be finite. Since no input is applied

We thus have eMn, = Af,92?, so Af, = eF where F =M22o - prior to I = 0 and since K, < co, we must have u(0) = 0. We would

A'. 2 surely be in serious trouble if, in order to design a robust compensator, we

From A, = eF,, we immediately obtain the well-known result that the needed the capability of generating inputs over arbitrarily large intervals

eigenvalues of(2) which tend to infinity as e - 0+ are "close" to those of of time o, with arbitrarily large amplitudes or rates of change.

(l/e)Au (see, e.g., (2, Corollary 2.11). One useful way of stating this Associated with any real-world measuring device is a minimum error
result is the following, which can be detccted. For example, if a function y represents an output

Lemma 2: If p is an eigenvaluc orA,, y > 0, and R < oo, then there voltage, velocity, or other physical quantity of interest, there must exist a

exists eo > 0 such that (2) has an eigcnvalue k, satisfying I XI > R and number 6 > 0, characteristic of the mea.suring device alone, such that

jarg ;k - arg (l/e)pl < 'y whenever 0 < e < eo. another output .9 cannot be distinguished from y if
Proof. From (7), the eigenvalues of (I/e)F I are also eigenvalues

of (2). Since Fg I A22 and F,- is continuous in e. each F; I has an sup {lly(t- (1iiI 0si1[<6. (10)
eigenvalue/A, with/u, - as e- 0 . Choose eo so that (I/ ) p, I > R and
Iarg A, - arg /t < ' whenever 0 < e < eo, and let A, = (I/e)p,. Then For the remainder of the paper. we assume a fixed source of input signals
k is an eigenvalue of (2), 1)4 > R, and Iarg , - arg (lI/e);I = Iarg p, and measurements and, consequently, a fixed set IU. and number 6 > 0.
- arg Al < Y. 0 The quantitics and 6 together determine an equivalence between

Suppose the transfer matrices of (I) and (2) are P and P,, respectively. systems: two systems are indistinguishable under input-output measure-
We will need conditions under which an eigenvalue of (2) is also a pole meni if for every u E %U. the output functions y and .9 of the two systems
of P,. satisfy (10). The next .esult applies this idea to the nominal and perturbed

Lemma 3: If(A2, B,, C2) is controllable and observable, there exists models (1) and (2).
eo > 0 and R < o. such that every eigenvalue )4 of (2) satisfying I k > Theorem 1: If A22 is strictly stable, there exists e0 > 0 such that,
R is also a pole of P, whenever 0 < e < eo. whenever u E 'U and 0 < e < co, the respective outputs y and y, of (I)

Proof. An eigenvalue , of(2) is a pole of P, if and (2) satisfy max fI1y(') - Y()j(I 10 < t < '} < 6.
Proof. We first note that yo(t) = I I Co exp (,A.,o)BoU(t - n) di

)4.1-A,, -All B, I - [?41-A, 0 B11] - CpnBfou(t) = yQt). Hence, we need only show that there exists to such
-A, 04I-A, B, a 0 OJ-F-' B, J that Ily,() - Yo(I)II < 6 whenever 0 ! t < r and 0 : e < to.

Decomposing y, = y,, + yp in the obvious way, we have Iy,(1) -
1I 0 y,0(1)11 s Ko I, IIC,, exp (t1A,,)B,, - C,0 exp (iA,o)BojI di7. Choose Ei

0 N. (8) > 0 such that 0 z e < el implies max (IC,, exp (iA,,)B,, - Co exp

(iA,o)Bn1 10 <s il r) < 6/(2Kor). Integrating by parts, we obtain

and E ?,.IA~i -A2 1 I01,()-y1o0 jlsK 1 1  ' exp(!F;-) Id?
X-All )-A,2 C',

C, C, • B,11l +KojiC1,B,,-Cfoaloll.
o[M-l 0] [kl 0A1, o N0 There exist e, > OandK < ccsuch that llexp Q "I)U1 <K, jC1, <K,

-0 e l- 01p N;' (9 and IIB/,R < K whenever I e 0 and 0 s e < e2.Let f = 6/(4K K2(K

c,, Cf; + 7)). We know that there exists e > 0 such that lexp ((7/)F;)II < f
whenever if s ,/ i r and 0 < e < e3 (see, e.g., (13)). Finally, there

have full rank. Choose R > max {I1l IX is an eigenvalue of A). From exists e4 > Osuch that jCpB1, - C/nBlal < 61/4Ko when e < e4. Let to
Lemma l,(Ft, Bio, C/0F; I) a (A12, B,, Cz). Hence, thereexistseo > = min {et,, e3, e, ). Then0 < e < toimplies Ny,(t) - Yo(I)H <6 /2
Osuchthat, whenever 0< e < eo, (F; ', Bf,, C,F;') iscontrollableand + KKz(K + 48') + 6/4 6. 0
observable and IXI > R implies that , is not an eigenvalue of A,,. It We have thus established that, for sufficiently small e, (1) and (2) are
follows immediately that all matrices on the right-hand sides of (8) and (9) indistinguishable on the basis of input-output information. Hence,
have full rank. 0 although the physical system is nominally described by (I), an equally
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valid model from an input-output perspective is given by (2) with e observable, and X is nonsingular with an eigenvalue in the sector S. Then

sufficiently small and A.: strictly stable. there exists to > 0 such that H, has a pole p, G S satisfying Ipj > R
whenever 0 < t < to.

IV. CLOSED-LOOP DESTABILIZATION Proof Since X is nonsingular, the closed-loop system (16) is of the
form (2). Let A. E S be an eigenvalue of X. There exists y > 0 such that

We are now ready to investigate the effects that the system perturba- s i S whenever larg s - arg (I/e)I < y. The result then follows from
tions in Section 11 have on a closed-loop configuration. Consider the Lemmas 2 and 3. 0
feedback compensator governed by Now consider behavior of the output y(t) in the closed-loop system

(16). Theorem 3 shows that under certain conditions, the instability
S= Fz + Gy, u = z + U. (I) described in Theorem 2 also has a pronounced effect on y(t). Let m denote

Lebesgue measure.
We consider only compensators with strictly proper transfer matrices Theorem 3: Suppose R < -, 61, 62 > 0, (X, Y, Z) is controllable and
since the results of 1e1 indicate that nonstritly proper conpensators are observable, and X is nonsingular with an eigenvalue in the sector S.
never robust with respect to unmodeled dynamics. Perturbations of (II) I) There exists to > 0 such that corresponding to each i E (0, Eo),

are there exist vectors X(, E in", zo, E R4 , o, E R", t, E LF' with Ixo, II,,] [ ] o,II..Io,I.,<,, <5iandasetfC10,.rwithml,<62 suchthatthe
0 e l r F, + G output y, of (20), subject to x(O) = xo,, z(0) = zo,, (0) = to,, (0)

ro,, and u a 0, satisfies Ily,(t)l1 > R for every t E [0, i] - 0,.
u=H~z+Hzr+u (12) 2) There existsao > 0such that corresponding toeach e E (0, to), there

exist a continuous function u,:1O, r] -. 11 with tlu,(t)I < 6, for all I E
where 10. r] and a set fl, C 10, r' with ml, < 62 such that the output of (20),

F-FF -'F., = F,G 'G,=G (13) subject to x(0) = z(0) = M(0) = 0) = 0 and u m u,, satisfies iy,(1)1l
GF,- zG=22 > R for every t E [0, 7-1 - I),.

Proof, 1) Since R is arbitrary and the system (16) is linear, we need
H,- H2 F2'F,2 1 = H, -H 2F' G, = 0 (14) only prove the result for a single vector norm, say, the Euclidean norm.

The decomposition (7) may be applied to (16), yielding real-valued
and F22 is nonsingular. The discussion of Section III applies equally well analytic matrix functions M,, N,, A,,, B,., " "., F defined on an interval
to both plant and compensator. 10, 01. Since F = X- I is nonsingular, F- I is analytic. It is shown in [ 151

Conbining (1) and (13) in a standard feedback configuration yields that there exists a continuous complex unitary matrix-valued function e -
U, defined for sufficiently small values ofe that puts F," Iinto continuous

[fl A BH ] [x ] [ B upper triangular form-i.e.,
G [C F+GDH + ,, D 12  ,

y=Cx+DHz., 5 0 "

Combining the perturbed systems (2) and (12) gives U(1)-whr e • , - IFe+I,,00 .. 0 A".
r 0 where each of the maps c - 1,, and e - {ti is continuous. Additional row

0 0  4el 0 and column interchanges can be used to reindex the/x,,; equivalently, Uo
0 '01 t] may be chosen so that t0o E S.

, -- - ~ Letll B, H, A12  BH21 LetIB
G, C, F,, iC, F, I 0
A21 B2H, A21 B /H2  B2  W , -

G C, F1 GC2  Flz J w=2I ,I, I .
y = C1X+ Caz. (16)

Let (15) and (16) have transfer matrice, H and H,, respectively.
From this point on, we assume that A22 and F22 are strictly stable Since N, is nonsingular on [0, /3), 11N,11 is nonzero. Standard norm

matrices. Thus, according to Theorem 1, (2) and (12) are equivalent to (I) inequalitites reveal that 11 W,1I < A,. From (7), it fohows that the natural

and (11) for sufficiently small e in an input-output sense. The perturbed response of (16) due to the initial condition w, is

closed-loop system (16) is also of the form (2); no obvious conclusions
can be drawn, however, concerning stability of either (16) or the matrix , (CfU)exp(!U'F'"U)

In view of LemmAs 2-4 as related to (16), we see that the properties of X From Lemma I, (F1, Cfl) = (X, ZX-1). This pair is observable since

as wll a thoe o thematrcesX is nonsingular; the corresponding observability matrix isas well as those of the matrices

Y= [ , z=jC 01 z ZX
zx = X- 1

are crucial for understanding the behavior of (16).
We are ultimately interested not only in the eigenvalues of the closed-

loop system, but also in the poles of H, and the behavior of the system
output.yK). The next two results treat first the closed-loop poles and then and the pair (X, Z) is observable. Thus, (U4F;'Uo, CfoU) is
output behavior. As a means of quantifying instability, let a e (0, ir/2) and observable. Since U; IF; I U is upper triangular, the first column of
consider the open sector S = {s E ,, - {0)1 larg sl < a). C1oUo is nonzero. Suppose c * 0 is the lth entry of the fir column of

Theorem 2: Suppose R < a*, (X, Y, Z) is controllable and CoU0. Then the same entry a, of C1, U, is nonzero for sufficiently small
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e. From (17), it follows that.Y, has ith entry ,,(t) = (61/(211 N, 1))cf, exp The divergence of the output of the closed-loop system described in
((/,)p,,t). Thus, Re Y, has the ith entry Theorem 3 is referred to in analysis texts as "almost uniform convergence

to inlinily." li view o1 the arbilrarily light bounds that may he placed on
Re (611(211N.ll))laI CXP (Ie Rc I,t) cos III .A ,,1 -arg (,). an Input or initial condition which generate this divergent behavior, we

conclude that. if the assumptions of the theorem are met, unbounded
Since Alo E S, Re p,, > 0 for small e. From elementary analysis, there instability at the output of a closed-loop configuration can result from
exists eo > 0 such that 0 < e < eo implies the existence of a set Q, with arbitrarily small noise impinging on the system.
.,, < A. and iRe c.,(t)l > R for all I E 10, 7'r - . So far we have deiionntrated thai the existence of destabilizing

We note that the initial condition w0 may be complex, lIn general, the perturbations of the plant and compensator is guaranteed if a certain linear
natural response of (16) is of the form.y(t) = r, (t)w where r, (t) is a real- algebra problem admits a solution. Indeed, if any A22, 81, and C2 arevalued matrix. Hence, Re y(t) -- r,(1) Re w. and if we set [xo zo, o',]rg er prbe9disaslto.Idei n ~,BadC r

chosen, (3) and (4) may be satisfied by simply selecting A12 and At,
= Re wTr, we obtain an output y, with ith entry y,(t) = Re 9,(t). arbitrarily and solving for Al, B,, and C,. A similar remark applies to
Therefore. lly,(t)ll z I;t ,,(tl > R for all 1 6 [0, 1 - 0,. Finally, we (13) and (14). It is sufficient, therefore, to find A,,, B2, C2, F22 , 02, and
note that 11 xo, 11, 11 z 11, 11 to, 11, 1to, 11 S 11 Re w, 11 s 11 w, 11 < 61. H2 such that 1) A21 and F22 are strictly stable. 2) (X, Y, Z) is controllable

2) Our approach is to construct an input function u, which steers the and observable, 3) X is nonsingular with an eigenvalue in S, and 4) (4)
system (20) from the origin to some state w, satisfying the conditions of and (14) are satisfied. Theorems 2 and 3 further invae in f )-4) are
part 1), the transfer occurring on an arbitrarily small I interval, then the met. the resulting instability in (16) becomes progressively worse as e

Baoi W (rst 0 since R may be chosen arbitrarily large. Thus, arbitrarily small
consider the pair (F-', F; 'By,). From Lemma , (F', F )=(, uncertainty can lead to arbitrarily large instability.
XY). This pair is controllable since X is nonsingular; the corresponding We now address the linear algebra problem 1)-4). We really need to
controllability matrix is find only one solution in order to demonstrate the existence of

destabilizing perturbations; however, it is possible to do better. To obtain
[XY XlY ... X-yl=Xl X ... X- yl an understanding of just how many destabilizing perturbations actually

and (X, Y) is controllable. Hence, (F,-' , F,-'Bf,) is controllable for exist, let (1), (2). (i1), and (12) have orders n, n + it, k, and k + k,
respectively; define q = (n + if) (n + ft + m + p) + (k + k) (k + k

sufficiently small e. Let + p + m). Also, consider the variety in 714 consisting of all (A1 , "-I ,
C2, Fi, -- , H 2) such that (3)-(6) and (13) and (14) are satisfied, and let

(t)=BF;rexp (-tF"r)W )- exp ( F"r (8 V C 111,; denote the intersection of that variety with the subset in which

where the Gramian W,(') is given by W,(r) = j[ exp (- iF;') A2 Z and F22 are strictly stable. V may be interpreted as the set of all
F-'B1 , B F;rexp (-jF,-1 ) dii. We is nonsingular for small a since possible state augmentations of (1) and (11) of order if and k,
(F;-, F fBp,) is controllable (see [11, p. 1841). All matrices in (18) respectively. Finally, let r C i

l
iq be the set of all points for which (X, Y,

converge and exp IF,- r ) converges uniformly on [0, 71 as e - 0+; Z) is controllable and observable and X is nonsingular with an eigenvalue

hence, J, converges uniformly to O'o. Thus, there exists a number MI < in S. We are interested in properties of the set v r.
c such that it1,(t)1l < MI for all t 6 [0, 71 and e sufficiently small. Theorem 4.

Choose M2 < on such that 11 C,, exp (tA,)lj < M 2 for small e and all t I) V t r is relatively open in V.
E [0. r] where C,, and A,, are given by (7). Since N,- Iis continuous, we 2) V C r is nonempty if k ? 2 and cither a) D = 0 and if > 2 orb) D
know from part I) that for sufficiently small e. there exist real vectors, x, * 0 and f > rank D.
zo,, to,. and r'o, with Ilxo, 11, tzoi. llI1jo,. 1'o, II < 61/(2M, IIN1 I11) and a
set 0, with A, < 62/2 such that the corresponding output Y, of (16) Proof..
satisfies Il.i,(t)l > R + (M,/M)6, for every t E 10, r] - 0,. Let I) This Is obvious since r is open in iP.

[x0,1 2) Suppose D = 0 and consider
xtie to, 171 0 0 ... 0 [2s/(5+ 1), o o"

Tmo j2(s) 0 U(s) 0

Then the output.Y, may be written .9, = y,, + y, where y,,(t) = C,, exp 0 . . ' 0
(tA,,)xo,, andyf,(t) = C, exp (/ie) F," ) xof,. From (19). Ilxo~,ll < 6i/
M,: terefore, Ilj,,(t)ll < (M2/MI) 5, for everyt IS [0, 71. It follows that Let (A22, B2, C2) and (F22, G2, H 2) be controllable and observable
ILv,(t)t > 1ly,(t)11 - 11y,,t)ll > R for each I G 10. ri - n,. reali7ations of Tand U. respectively. Then A22 and F2 are strictly stable,

Next, define a,(t) = 4,(t)xo.,. Then IIxo,ll < 61/M, guarantees that - CIA 2,2 B2 = T(C) = D, and -H 2 Fi2 l G2 = U(O) = 0. Note that T
lIII(t)a < 51, and fI, steers the system 9 = F- Ix + F; 'B,u from the and U have degrees i andk . Since (X, Y, Z) has transfer function
origin as t = 0 toxo, at t = r. (See, e.g., [I11, p. 5561.) Let

V(s) = (I- T(s) U(s))"-' T(s)

ult)= at<t~r. " 2[s(s+ 1)"/((s+ 1) " *E-A2-s) 0 .. 0
0

Then Hu,(t)i < 5, and u, steers the second subsystem in (7) from the =
origin at t = 0 to xof, at t w Fr. u, also steers the firmr subsystem in (7) h. 0

from the origin to some state go,, at I = er. Since 20,, is given by the
convolution integral lo,, - I,' exp (IA,)B,,u,(t) dt, the construction of and V has characteristic polynomial A(s) = (s + l) ' - 2"+s, it

u, and uniform convergence of exp (tA,,) guarantee that 10,, - 0 as e - follows that (X, Y, Z) is controllable and observable and X is nonsingular
0*. Hence, .,, - 0 uniformly on (0. r] as e - 0 + where .F,,(t) = C,, with a unit cigenvaluc.
exp (tA,,)2 0 , Applying the input u, steers the system (20) to w, = Now suppose D * 0. There exist nonsingular matrices M and N such
N,[,o,,xo,]Tat I = er. Fort I E r, fl, the corresponding output isy,(t) that
= .,,(t - er) + yf,(t - er), so iy'(011 > R - IIA,(t - er)1 > R for
smallaeand all t 6 [ar.,ii - (as + 0,). Thtus, if we choose eo sufficiently
smell with e < 62/2, and 0, = 10, e?) U ( r + A,), we obtain mgfl, < 61 MDN=

and ly,(t)I > R for all I C [0, rl - 0, whenever 0 < t < o. 0
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has characteristic polynomial A(s) = (S + 1)' '((s+ .1.)"' ri- D. W. LUSE
21""si). Reasoning similarly as for part a). we conclude that A,. and

F2, are strictly stable, (4) and (14) hold, (X, Y, Z) is controllable and Abstract-A mulllvariable Nyquist criterion Is given which applies to a
observable, and X is nonsingular with a unitr cigenvalue. wide class of open-loop transfer matrices, including some which are

To complete the proof, we need only choose A 12, A21, F12, and 21 Improper or have infinitely many poles In the rIght-hialf plane. Applies.
arbitrarily and solve for the remaining matrices fromn (3). (4) and (13), lion Of the test to specific examples requires only elemenlary-knowledlge
(14). Ll of complex variable theory.

Part 1) of Theorem 4 demonstrates that, in a certain sense, the high-
frequency effects which bring about closed-loop instability do not I. INTRODUCTION
correspond to thc complement of a generic set, and hence cannot be
dismissed as merely a pathological case. The Nyquist test 161 for closed-loop stability of systems in terms of

open-loop properties has been generalized for applicability to many types
V. CNCLUIONSof feedback situations. For linear systems, the main three directions of
V. CNCLUIONSresearch have been toward multivariable systems as originated by

We have shown that input-output information alone is insufficient for Macrarlanc 111, distributed systems (e.g., 121-151). and nonsalar gain
designing robust linear compensators. This conclusion leads one inimedi- variations (e.g., 171). The more sophisticated stability tests often involve
ately to ask what further information is actually required to allow a robust technical concepts such as the Fredholm index and almost periodic
design. Although we cannot give a clear answer yet, we can offer sonmc functions. The test given in this note applies to at very wide class of
insight. The development of our results indicates the high-frequency transfer matrices, but the stability conditions themselves involve only the
behavior in (2) and (12) plays a role in destabilization. Such behavior is winding numbers of simple, closed, piecewlise-sntiooth curves. This
closely related to the infinite-frequency structure of (2) and (12) with i = a1lows a number of theoretical difficulties to be ignored in the theorem
0 (see, e.g., (141). One might therefore suspect that some knowledge of statement, and to be evaded in practice for many particular examples.
the poles and zeros at infinity in either the plant or compensator is These advantages are gpined through two sacrifices of hypothesis. When
essential. The exact form of such infornmation and whether it can be easily stability of distributed systems is considered, the type (or types) of L,
measured are important topics for further research, stability is a concern 151. [101. For this noe, stability is restricted to be

finite-gain L2 stability. The second sacrifice is that the opep-locp trantsfer
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ally stable seMt.irsu-. Speciil attention will MINISYMPOSIUM 10
e given to relations between the hypotheses used

for the convergence results and convergence pro- Room: Cathedral Hill A
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AUSTRIA On the Topological Structure of the Orbit Space
of Controllable Generalized Linear Systems

Abstract: We study the topology of the orbit
500 PM' space of controllable descriptor systems modulo

Approximation techniques for parabolic control restricted system equivalence. Using a scaling

systems: a variational approach action, we prove that this space is an analytic
manifold. Using the Weierstrass decomposition,

In this paper we consider the linear quad- we obtain an analytic stratification of this
ratic regulator problem for a class of boundary manifold. By decomposing the strata into
control problems for parabolic systems. The generalized Hermit* cells, and using tools from
problem is formulated using a variational Borel-Moore homology, we compute the singular
approach and an approximation theory is devel- homology groups for this space in the complex
oped for solutions of the associated operator cases. Consequently, the orbit space of
Riccati equation. Our study includes strongly- controllable descriptor systems is a smooth
damped elastic systems. compactification of the orbit space of controll-

able state space systems modulo change of basis
H.T. Banks in the state space.
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6:00 PM
Uniform stabilization/exact controllability from
the boundary of thermoelastic plates 5:00 PM

We consider the small vibrations of a-thin A geometric Decomposition Theorea for Singularly
homogeneous, thermally and elastically isotropic Perturbed Systems with AoolIcations to Convergence
plate of unifgrm thickness. It is known that --- ti-n-

thermal dissioation alone is sufficient to strong- Let B and A be nxn matrix-valued analytic
ly, but not uniformly, stabilize the elastic com-; functions of a nonnegstiv* real parameter 4 with
ponents of the motion. It will be shown that sE(s)-A(s) a regular matrix pencil for all a. The
theintroduction of additional dissipation through limiting behavior of the solutions of the family
the action of bending and twisting moments, and of differential equations
shear force, at the boundary leads to uniform
asymptotic stability and to explicit asymptotic
energy estimates. The more difficult question of )
exact controllability of the elastic dynamics by as s--40 is at best only partially understood.
means of such boundary forces and moments will Some sufficient conditions are known for certain
also be considered. It may be shown that if the types of convergence, but no necessary and
thermal diffusivity is sufficiently small, the sufficient conditions are known for nontrivial
reachable set of the elastic components of the topologies. We first present a new geometric
motion is essentially the same as for purely decomposition theorem for (1). We then show that
elastic plate motion. this result enables us to prove a necessary and

sufficient condition under which, for any initial
John E. Lagnese vector, the corresponding solutions of (1)
epartment of Mathematics converg uniformly on compact subsets of (O,-w
Georgetown University with bounded peaking in [0,i].
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